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INTRODUCTION 
NAND flash memory—named after the NAND logic gates it is constructed from—is used for 
nonvolatile data storage in digital devices. The different types of NAND flash memory target 
different applications and have significantly different costs and longevity. This paper addresses 
the two main reliability concerns in NAND flash memory (data retention and endurance), what 
type of NAND flash memory is best suited for embedded computer systems, and how to optimize 
computer systems for maximum reliability of NAND flash memory. 

History 
In the late 1990s, NAND flash memory first began to be used in consumer products such as USB 
flash drives (also known as thumb drives) and digital cameras. Even though the cost was very 
high compared to other storage media, such as floppy disks, rotating hard drives, and CD-RWs, 
the size, durability, and power efficiency of flash memory opened a new world of portable data 
storage. 

Due to its rapidly increasing capacity and decreasing price, flash memory became a viable 
primary storage medium by 2005 for embedded computer products like first-generation SEL 
computers (e.g., the SEL-3351 System Computing Platform). At that time, most flash memory 
was available in the form of memory cards such as CompactFlash®, SD, and xD cards, which 
were typically used in digital cameras and portable MP3 music players. The 2.5-inch solid-state 
drives were also available and offered the greatest capacity, but cost prevented them from seeing 
widespread use until years later. 

The SEL-3351 used the CompactFlash form factor as a primary storage device due to its large 
capacity and widespread availability. High-capacity for its time, the 8 GB industrial-grade 
CompactFlash card used in SEL computers in 2005 cost over $1,000 compared to $100 to $150 
for the same size consumer-grade CompactFlash. Industrial-grade cards were pricier for many 
reasons, including higher quality manufacturing processes, more rigorous testing and screening, 
temperature trials, and low market demand compared to consumer-grade devices. 

Today, flash memory is the most common data storage medium and is used in nearly every 
computing and intelligent electronic device. While advancements in capacity and cost are slowing 
down due to technical limitations, there is currently no competing technology positioned to 
overtake flash memory anytime soon. 

Though improvements in flash manufacturing technology continue to decrease cost and increase 
storage capacity, the industrial-grade flash memory storage devices used in SEL computers still 
cost significantly more than similar consumer-grade devices. One of the biggest reasons is storage 
density, or how much data the different types of NAND flash can store on a single flash chip. 
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Types of NAND Flash Memory 
Most NAND flash memory is categorized by how many bits of information are stored in a single 
memory cell. Flash memory stores data by charging flash cells to a specific level, and it reads 
data by measuring the level of charge on the cells. Single-level cell (SLC) memory stores one bit 
per cell; a high charge indicates a binary 0 while a low charge indicates a binary 1. Multi-level 
cell (MLC) stores two bits per cell, dividing the same charge range into four regions, each 
corresponding to the binary pairs 11, 10, 01, and 00. 

Additional multi-bit types of flash memory further subdivide the charge range to store additional 
bits into each cell. For example, a triple-level cell (TLC) stores three bits by dividing the voltage 
range into eight regions and a quad-level cell (QLC) stores four bits using 16 regions. For each 
additional bit, the number of required charge subdivisions doubles, yielding exponentially 
diminishing returns. 

In addition to the number of bits per cell, NAND flash has evolved through different chip 
topologies to improve storage capacity and cost. Older technology uses a planar or 2D topology, 
meaning all memory cells are arranged in a single layer on each flash chip. Newer technology 
uses a 3D topology, which stack layers of memory cells on top of each other within a single chip. 
Current 3D NAND technology contains dozens or even hundreds of layers in each chip as 
manufacturers continue to advance their production systems. 

Almost all consumer-grade products use one of the multi-bit types of flash memory (at the time of 
writing, 3D TLC and 3D QLC are most common) because their higher data density yields lower 
cost-per-gigabyte than SLC. This creates a snowball effect where SLC flash technology is less 
popular, which reduces its production volume, which further increases its cost. When considering 
the cost differences of consumer-grade versus industrial-grade and multi-bit versus SLC memory, 
the combined effect leads to a large cost disparity between industrial-grade SLC flash devices and 
consumer-grade flash devices. 

FAILURE MECHANISMS IN NAND FLASH 
The most commonly known failure mechanism in flash memory is related to the overall 
operational lifespan of the device. Writing and overwriting data to the flash memory result in 
program/erase (P/E) cycles. P/E cycles create a trapped charge in the NAND flash cells, which 
reduces the margin for bit errors to occur. As this trapped charge accumulates over time, the bit 
error rate eventually becomes so high that the error-correcting code (ECC) cannot compensate, 
making the flash memory no longer useable. 

The number of P/E cycles the flash memory can endure over its lifespan while still providing 
reliable data storage is called endurance. Endurance is tested using a process defined by Joint 
Electron Devices Engineering Council (JEDEC) standards, and it is typically specified as a 
number of terabytes written (TBW) the flash memory device can endure and still provide 
adequate endurance for the specified workload. Client workloads require one year of powered-off 
data retention at 30 degrees Celsius while Enterprise workloads require three months of powered-
off data retention at 40 degrees Celsius [1]. While this is a very useful measurement, it only 
represents a single data point on what is actually a three-dimensional plane. Often overlooked, the 
two other dimensions (temperature and data retention) are not fixed points, they vary for each 
system in operation, and are critical in embedded and industrial applications. 

Data Retention 
In flash memory, data retention is the measure of how long the integrity of data can be guaranteed 
after being written to the flash memory without suffering from data corruption. Fundamentally, 
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each NAND flash memory cell can be in one of two states: programmed or erased. To program a 
cell, its electrical charge is precisely increased to a threshold level (Vt). Erasing a cell removes all 
charge, which enables the cell to be programmed again. Once a flash cell is charged, the electrons 
stored in the cell slowly leak across the NAND gate, causing the charge on the cell to decrease 
over time. With enough leakage, the charge level on the cell will drift into the neighboring region, 
causing the incorrect binary value to be read (a bit error). 

In SLC flash, the cells are programmed to a level near the maximum Vt, leaving a very large 
margin for the charge to degrade before a bit error occurs. MLC flash utilizes that margin area to 
create four data value regions, doubling the data density to two bits per cell but greatly reducing 
the margin for bit errors. TLC flash further subdivides the programmed state to create eight 
regions to gain another 50 percent increase in data density (three bits per cell) but reducing the 
margin even further. 

Figure 1, Figure 2, and Figure 3 illustrate how SLC, MLC, and TLC flash store data by charging 
the cell to the level that correlates with the desired data/bit value(s). The shaded regions represent 
the probability curve of a proper cell charge level, and the red arrows show the relative margin for 
bit errors. 

 
Figure 1 SLC Flash Data Storage 

 
Figure 2 MLC Flash Data Storage 
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Figure 3 TLC Flash Data Storage 

Data retention is a function of the rate of charge loss and the amount of margin between charge 
regions. The charge loss is strongly driven by the temperature of the flash memory, and the 
margin is affected by the type of flash (SLC, MLC, TLC, etc.) and the number of P/E cycles the 
flash memory has endured. 

A Complete View of Data Integrity 
Assuming SLC NAND flash specifications of 1 year of data retention at 55 degrees Celsius after 
enduring 100,000 P/E cycles, and using the Arrhenius equation [2] to calculate the acceleration 
factor relative to temperature, we can estimate the effect of temperature on data retention. 
Additionally, using formulas from JEDEC and some empirical data, we can also estimate the 
increase in data retention when the flash memory is below the maximum number of P/E cycles. 
Finally, we can combine these two curves into a set of curves to estimate the data retention of 
SLC flash memory given the average number of P/E cycles it has endured and the average 
operating temperature. 

The graphs in Figure 4 are hypothetical. In practice, data retention at extremely low P/E cycles 
may not be as high as indicated because the mathematical function approaches infinity at zero P/E 
cycles. 

 
Figure 4 SLC Flash Data Retention Relative to Temperature (left) and P/E Cycles (right) 
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Figure 5 shows that a lightly used (1,000 P/E cycles) SLC flash memory operating at 55 degrees 
Celsius may have around 16 years of data retention. At higher temperatures, however, the data 
retention is substantially lower: 6 months or less at 85 degrees Celsius. 

 
Figure 5 SLC Flash Data Retention Relative to P/E Cycles at Different Temperatures 

Figure 6 compares SLC to MLC at 55 degrees Celsius. 

 
Figure 6 Comparison of MLC and SLC Flash Data Retention at 55 Degrees Celsius 

Although MLC flash memory has much lower endurance than SLC, it may still be considered 
acceptable for applications that are write-protected or that write very little data to the flash 
memory. However, when operating in a warm environment, the MLC flash memory system could 
fail due to data corruption within the expected operational life of the system. In less severe 
conditions, the MLC flash memory may provide acceptable reliability, but the point remains that 
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for any given temperature and P/E cycle count, SLC flash memory provides approximately ten 
times the data retention and over 30 times the endurance of MLC. 

Cold Operation 
Flash memory is negatively affected by cold temperatures. While data retention is incredibly 
good at low temperatures, the ability to accurately charge a flash cell decreases rapidly as 
temperatures drop below 10 degrees Celsius. This means that data written while the flash memory 
is warm fit the data retention model discussed previously, but retention is reduced for data written 
while the memory is cold. This problem affects both types of flash, but it is more severe in MLC, 
making it less suitable than SLC in cold applications as well. 

pSLC Flash 
Pseudo-SLC (pSLC) storage devices use lower-cost MLC flash memory, but effectively store 
only one bit per cell like SLC flash. The flash controller treats the erased state (normally 11) as 1 
and any programmed/charged state (00, 01, 10) as 0. Using the MLC flash in this way improves 
the margin against bit errors and also increases endurance by using a less stringent program/erase 
process. Available at a slightly higher cost, pSLC offers significantly better endurance (typically 
20,000–30,000 P/E cycles) than standard MLC. This makes pSLC a good middle-ground 
alternative to the more expensive SLC flash memory. 

IMPROVING RELIABILITY WITH SYSTEM DESIGN 
While the problem of data retention can be a concern even for SLC flash memory, the 
demonstrated reliability of embedded and industrial computer systems over the last decade 
indicates that SLC is indeed an excellent storage medium for these applications. In addition, there 
are ways to design the embedded system to minimize P/E cycles, maintain data retention, and 
monitor flash memory health, further improving the reliability of flash memory. 

Minimize P/E Cycles 
The number of P/E cycles can be minimized by avoiding disk-write activity unless necessary for 
the application. For example, virtual memory in the operating system (OS) can be disabled. 
Virtual memory creates a page or swap file on the system drive and accesses it like 
random-access memory (RAM), with substantial amounts of read and write operations. 
Embedded systems typically have a static application load. If the system is designed with the 
appropriate amount of system RAM, virtual memory is completely unnecessary, and it can 
actually decrease performance and determinism if left enabled. 

Some operating systems include a RAM drive overlay or write-filter, which caches all disk-write 
operations in RAM until a commit operation is executed. The commit operation writes the cached 
data all at once to the flash memory, minimizing the effect of periodic small drive-write 
operations that are unavoidable in many applications. 

Maintain Data Retention 
Although minimizing P/E cycles is the best first step, it is beneficial to not completely eliminate 
all P/E cycles. The controllers used in flash memory devices have wear leveling algorithms, 
which spread the write operations across all flash cells evenly, to prevent any one flash cell from 
wearing out before all of the rest. Writing small amounts of data to the flash memory over time 
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will cause the wear leveling feature to eventually rewrite all data stored in the flash memory, 
resetting the data retention clock, and ultimately improving overall data retention (even though it 
is moderately increasing the P/E cycles). 

A computer running a typical Windows or Linux® OS will have enough disk activity from 
background tasks and logging to not require this kind of upkeep. However, an OS with a RAM 
drive overlay or write-filter protection could benefit from a background task writing small 
amounts of data to a partition that is not protected. 

Many modern flash memory controllers already have background integrity scans built into the 
controller, making this type of upkeep automatic and completely transparent to the OS and 
application software. An example of this already in use is read-disturb monitoring. Whenever a 
flash cell is read, the charge of nearby flash cells in the same block or page can be disturbed, 
eventually causing data corruption. When the flash memory controller detects this corruption 
during a read command, its read-disturb feature will automatically rewrite that block of data. 
More advanced controllers include a patrol-read background process, which reads the entire 
logical contents of the drive on a slow periodic interval and re-writes data that has correctable bit 
errors before further degradation makes them uncorrectable. 

Monitor Status 
Most flash memory storage devices that operate on mass storage interfaces (such as 
CompactFlash, CFast, and 2.5-inch solid-state drives) provide status information through the 
Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.) interface. Although much of 
the information available through S.M.A.R.T. is vendor-specific, the interface usually provides 
the operating temperature of the storage device and often includes data for the average number of 
P/E cycles. Some flash memory storage devices even provide a percent estimate of the remaining 
flash memory life. Also useful in predicting imminent storage device failure is the spare block 
count, which typically starts to decrease rapidly as the storage device nears the end of its useful 
life. 

Status monitoring could be incorporated into the background task mentioned previously. The task 
could monitor the operating temperature and P/E cycle count on the storage device to 
dynamically adjust the rate that the flash memory is written to, optimizing P/E cycles versus data 
retention at any temperature. 

Overprovision 
Probably the easiest way to maximize data integrity on any system using flash memory is to 
purchase a larger capacity storage device. Due to the wear leveling feature built into the flash 
memory controller, a larger storage device takes longer to wear out because the P/E cycles are 
spread across more flash cells. This results in both longer flash memory life and longer data 
retention. While using the largest storage device available is often not economically viable, using 
one that is at least one size larger than necessary for the application is money well spent. 

CONCLUSION 
While flash memory has known weaknesses, it has proven to be far superior in reliability and 
performance to its predecessor: rotating hard drives. Even though the initial cost of SLC flash 
memory is considerably higher than MLC variants, the long-term cost is significantly less in 
high-endurance applications. MLC flash can corrupt and lose data within the operational lifetime 
of an embedded computer system with moderate or high data workloads, even if the computer is 
not run in extreme temperatures. In the event of a drive failure, the cost to replace the drive, 
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recover lost data, and reconfigure the computer typically exceeds the cost of a properly selected 
high-endurance flash storage device. This is why SEL recommends carefully selecting a flash 
storage device that meets the long-term needs of the application. SEL strives to offer the most 
reliable storage technologies available in order to minimize maintenance and total cost of 
ownership and to maximize reliability and availability. 

For guidance in selecting the appropriate flash storage device for your application and calculating 
storage device lifetime estimates, refer to SEL Application Note AN2016-03, “Determining 
Solid-State Drive (SSD) Lifetimes for SEL Computing Platforms.” 
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