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Abstract—Mho elements used for the protection of 
transmission lines have a distance reach setting but do not have a 
resistance reach setting. Quadrilateral elements offer both 
distance and resistance reach settings. The resistance coverage or 
how much fault resistance a mho element will be able to detect 
depends on the natural response of the element. For 
quadrilateral elements, the resistance coverage depends upon the 
resistance reach setting but is not necessarily always equal to this 
latter value. The purpose of this paper is to identify factors that 
determine the resistance coverage for both the mho and 
quadrilateral elements. These factors are the network 
parameters such as the source and transmission line sequence 
impedances, the distance to the fault, and, in the case of 
quadrilateral elements, the resistance reach setting. Some basic 
rules are derived based on the testing of elementary networks. 

I.  INTRODUCTION 

Mho elements for the protection of transmission lines do 
not have a reputation for extensive resistance coverage. In this 
paper, the resistance coverage for a distance element (mho or 
quadrilateral) means the maximum fault resistance that the 
element is able to detect at a given distance from the relay on 
the transmission line. Quadrilateral elements have been 
devised to overcome this shortcoming and are considered to 
have greater resistance coverage than mho elements do. In 
order to achieve this greater coverage, quadrilateral distance 
elements have an additional setting: the resistance reach or 
resistance setting. Contrary to what might be initially 
assumed, the resistance setting does not behave like the 
distance setting: whereas the distance setting constitutes, in 
most cases, the maximum distance at which the element will 
detect a fault, the resistance setting does not necessarily 
constitute the maximum fault resistance that the element can 
detect. 

When implementing changes on elementary networks such 
as a single transmission line between two sources, we rapidly 
realize that the resistance coverage of both mho and 
quadrilateral elements does not remain constant and will vary 
with the distance to the fault, line loading, and changes 
occurring in the sources and transmission line impedances. 
These last three items identify the network parameters that are 
varied in the study described in this paper in order to evaluate 
the change in the resistance coverage. Changes in the 
resistance coverage of distance elements will also occur if 
changes are implemented in the network configuration, such 
as the addition of a parallel line with or without mutual 
coupling. 

Besides the evaluation of the impact of changing network 
parameters on the resistance coverage of distance elements, 

the other objective of this paper is to establish an analytical 
relation between the network parameters of an elementary 
network and the maximum fault resistance Rfmax that a fault 
detector (mho or quadrilateral) can detect. 

In this paper, we concentrate on single-phase-to-ground 
fault detectors. 

II.  THE GENERIC EQUATION OF IMPEDANCE RELAYING 

A.  Elementary Network With a Single Transmission Line 

Consider the elementary power network in Fig. 1, 
consisting of a single transmission line supplied by two ideal 
voltage sources. Equation (1) is the generic equation on which 
impedance relaying is based. This equation is applicable to a 
distance or impedance element located at the left bus and 
looking toward the right or remote source. 

 R

I

KVR
ZR d • ZL1 Rf

IR K
    (1) 

  Vb 1 • Va

 

Fig. 1. Elementary power system 

The demonstration of (1) is provided in Appendix A, where 
all its variables are identified for the case of Phase A-to-
ground faults. For any impedance loop considered and shown 
in Table I, (1) is the expression of the apparent impedance 
seen by the distance (ANSI 21) element when supplied with 
the proper voltage VR and current IR required by the 
particular impedance loop. The first term to the right of the 
equal sign (i.e., d • ZL1) is the term that protection engineers 
are most familiar with. It expresses the property that the 
apparent impedance is proportional to the positive-sequence 
(PS) impedance of the line ZL1, the constant of 
proportionality being the distance to the fault d. The second 
term (i.e., Rf • KR/KI) is proportional to the fault resistance Rf 
and is considered to be an added error that is most of the time 
ignored by protection engineers. However, it is typically taken 
into account in studies dealing with fault location [1]. Mho 
characteristic distance protection is based on the assumption 
that the fault resistance will be small, and this assumption has 
been justified by decades of successful practice and 
verification. When significant fault resistance is expected, 
mho elements are conventionally supplemented with distance 
quadrilateral elements, providing better fault resistance 
coverage. 
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TABLE I  
IMPEDANCE LOOP VOLTAGES AND CURRENTS 

Fault Type VR IR KR 

A-G VA IA + K0 • I0  R
3

K
2C1 C0 1 K0


   

 

B-G VB IB + K0 • I0  R
3

K
2C1 C0 1 K0


   

 

C-G VC IC + K0 • I0  R
3

K
2C1 C0 1 K0


   

 

A-B, A-B-G VA – VB IA – IB R
1

K
2 • C1

  

B-C, B-C-G VB – VC IB – IC R
1

K
2 • C1

  

C-A, C-A-G VC – VA IC – IA R
1

K
2 • C1

  

A-B-C, A-B-C-G V1 I1 R
1

K
C1

  

 
Table I provides the expressions of VR and IR for the six 

possible impedance loops: three ground faults and three phase 
faults. In Table I, we have added a seventh impedance loop 
that is three-phase fault detection based on the use of the 
positive-sequence voltage (PSV) and current. In reality, this 
seventh loop is not used because three-phase faults will be 
detected by the three phase-based impedance loops. In Table I, 
the current I0 is the zero-sequence (ZS) current at the relay 
location, whereas K0 is the ZS compensating factor defined by 
(50) in Appendix A. The same derivation principles applied in 
Appendix A for Phase A-to-ground faults can be applied to 
the other impedance loops shown in Table I. 

Table II provides the exact location and identification of 
the fault resistance for the different impedance loops. 

The term KR is a function of the PS and ZS current 
distribution factors and is provided in Table I for each 
impedance loop. The expressions of the PS and ZS current 
distribution factors (or ratio of the sequence current at the 
relay location over the same sequence current at the fault 
location) as a function of the distance d to the fault and the 
network impedances are: 

 
 ZR1 1 d ZL1I1 I2

C1 C2
I1F I2F ZL1 ZS1 ZR1

 
   

 
 (2) 

 
 ZR0 1 d ZL0I0

C0
I0F ZL0 ZS0 ZR0

 
 

 
 (3) 

TABLE II 
FAULT RESISTANCE LOCATION 

Fault Type Fault Resistance Location 

A-G (shown) 
B-G 

C-G 

 

A-B 

B-C (shown) 

C-A 
 

A-B-G 

B-C-G (shown) 

C-A-G 

a
b
c

Rfg

Rf/2 Rf/2

 

A-B-C 
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The term KI is equal to the ratio of the fault current, 
represented by IR, for a particular impedance loop over the 
difference between the current IR and its value prior to the 
fault (i.e., the load current). For systems operated with no load 
current prior to the fault, the term KI is simply equal to 1.  

 I
prefault

IR IR
K

IR IR IR
 

 
 (4) 

Equation (1) allows us to relate the fault resistance to the 
particular impedance loop voltage and current. It also allows 
us to extract the value of the fault resistance once the fault 
type is identified. 

 I

R

KVR
Rf d • ZL1 •

IR K
   
 

 (5) 

Equation (5) underscores the virtual impossibility of 
calculating the fault resistance using the transmission line 
single-ended data. We would need to know the exact fault 
location and the two source impedances in order to be able to 
calculate KR. The load current prior to the fault also needs to 
be known. This explains the approximations in the 
conventional resistance blinder calculations as found in 
quadrilateral elements and described later in this paper. 

B.  Elementary Network With Parallel Lines Without Mutual 
Coupling 

Consider the power circuit of Fig. 2. This is simply the 
elementary network of Fig. 1 to which a parallel transmission 
line without mutual coupling has been added. 

  Vb 1 • Va

 

Fig. 2. Elementary network with parallel lines 

Does (1) still apply for distance elements implemented on 
the left terminal of the bottom line? The answer is yes for the 
impedance loop voltages and currents as provided by Table I, 
but the factor KR has to be changed to the following: 

 
 R

P P

3
K

2C1 C0 (1 K0)


 
 (6) 

In (6), the current distribution factors are no longer 
provided by (2) and (3) but are now equal to the following 
(see Appendix A): 

      
   

P P

1 1

1 1

C1 C2

1 n d • ZR1 1 d • ZS1 1 d • n • ZL1

1 n • ZS1 ZR1 n • ZL1

 

     
  

 (7) 

     
   

0 0
P

0 0

1 n d • ZR0 1 d • ZS0 1 d • n • ZL0
C0

1 n • ZS0 ZR0 n • ZL0

     


  
 (8) 

Equations (7) and (8) are used later in this paper when 
establishing the relation between element resistance coverage 
and the network parameters. 

III.  THE RESISTANCE COVERAGE OF MHO ELEMENTS 

A.  The Implementation of Mho Elements 

Implementing a conventional impedance or distance 
(ANSI 21) element with a mho characteristic is done by 
defining one operating vector and one polarizing vector as in 
the following: 

 
op

pol pol

S D • ZL1• IR VR

S V

 


 (9) 

In (9), D is the element distance reach in per unit of the line 
length, ZL1 is the line positive-sequence impedance, IR is the 
current supplied at the input of the element, and VR is the 
voltage at the input of the element. 

Conventional voltage polarizing quantities (Vpol) include 
self-polarization, cross-polarization, polarization by positive-
sequence phasor voltage (V1), and, finally, polarization by 
positive-sequence voltage memory (V1M). 

The element asserts when the scalar product between the 
operating quantity and the polarizing quantity is positive or 
when it satisfies (10). 

   *
polreal D • ZL1• IR VR • V 0     (10) 

In (10), real represents real part of and the asterisk points 
to the complex conjugate of. The scalar product is tantamount 
to implementing an angle comparator: if the angle between the 
polarizing quantity and the operating quantity is less than 
90 degrees, the element asserts. 

An alternate solution to the scalar product of (10) is to 
calculate the distance quantity m as follows [2]: 

 
*

pol

*
pol

real VR • V
m

real ZL1• IR • V

  
  

 (11) 

Provided the denominator in (11) is positive, the next step 
is to verify that the calculated distance m is smaller than the 
set reach in order to assert the element. 

 m D  (12) 

In order to cover all possible fault types on a transmission 
line, the relay has to process six impedance loops, three for 
ground faults and three for phase faults. Each impedance loop 
requires a particular voltage VR and current IR. The 
expressions of VR and IR for the six possible loops are 
provided in Table I. 

B.  Analytical Relation Between Ground Mho Element 
Resistance Coverage and the Network Parameters 

For the elementary power system in Fig. 1 for which the 
generic equation of impedance relaying has been derived, it 
would be practical to obtain a mathematical expression for the 
resistance coverage as a function of the network parameters. 
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Based on the generic equation, the operating and polarizing 
quantities for the Phase A-to-ground mho element are 
provided as: 

 
 op

pol pol

S D • ZL1• IA K0• I0 VA

S V

  


 (13) 

From (1), the current at the relay can be expressed as: 

  
R

I

VA
IA K0• I0

K
d • ZL1 Rf •

K

 


 (14) 

Introducing (14) into the operating quantity in (13), we 
obtain: 

 
R

I

D • ZL1
Sop 1 • VA

K
d • ZL1 Rf •

K

 
 
  
  
 

 (15) 

The element will assert when the scalar product between 
the operating and polarizing quantities is greater than or equal 
to zero, or: 

 *
pol

R

I

D • ZL1
real 1 • VA • V 0

K
d • ZL1 Rf •

K

  
  
   
      

 (16) 

Assuming self-polarization, we have: 

 
2* *

polVA • V VA • VA VA   (17) 

We shall see later in this paper that the mho element 
resistance coverage is somehow affected by the load current. 
If we assume zero load, the factor KI in (16) can be set to 1. 
Equation (16) simply becomes: 

 
R

D • ZL1
real 1 0

d • ZL1 Rf • K

 
   

 (18) 

In (18), replacing KR by its expression in Table I, the 
equation for the maximum resistance coverage is obtained by 
using the equal sign: 

 

 
max

D • ZL1
real 1 0

3• Rf
d • ZL1

2 • C1 C0 • 1 K0

 
 
  
 

      

 (19) 

Equation (19) allows the calculation of Rfmax as a function 
of the network parameters only if self-polarization and zero 
load current are assumed. If we assume another type of 
polarization such as polarization by PSV, we end with: 

 *

R

D • ZL1
real 1 • VA • V1 0

d • ZL1 Rf • K

  
      

 (20) 

In (20), there is no guarantee that the angle between VA 
and V1 is equal in all conditions, so we cannot make the 
voltages disappear from the equation, as in the case of self-

polarization. Our attempt to derive an expression for the 
resistance coverage as a function of the network parameters is 
possible then only for the self-polarization case. 
Unfortunately, this is the least interesting because it is not 
used very often. 

C.  The Resistance Coverage of Ground Mho Elements 

When considering a mho element, there is only the distance 
reach setting D that is introduced in the base equation 
provided by (13). Because there is no resistance setting, the 
resistance coverage of a mho element has to be considered as 
intrinsic to its characteristics. 

    1)  Impact of the Polarizing Voltage 
Consider the elementary 230 kV single-line network of 

Fig. 1 as shown in Fig. 3 with specific sources and 
transmission line impedances. All resistance values obtained 
from tests on this network are shown in the rest of this paper 
in primary values. Assume a single-Phase A-to-ground fault is 
applied at a distance d from the left bus. We want to 
investigate the resistance coverage of the mho ground element 
when three types of polarizing voltages are applied: self-
polarization, PSV polarization, and PSV memory. Assuming a 
distance reach D for the element of 100 percent of the line 
length, the results are shown in Fig. 4. The line loading angle 
has been set to 0 degrees. 

  Vb 1 • Va

   
   

ZS1 10.0 73  
ZS0 33.0 68.5  

   
   

ZR1 20.0 78  
ZR0 62.08 71  

   
   

ZL1 17.47 86  
ZL0 62.47 75.38  

 

Fig. 3. Single-line power network 

0
0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

Distance to the Fault (pu)

PSV Memory Polarization

Self-Polarization

PSV Polarization = Reference

 

Fig. 4. Impact on resistance coverage of voltage polarization for the mho 
ground element at zero load 

From Fig. 4, it is obvious that the best resistance coverage 
is obtained with PSV memory polarization. The second-best 
coverage (very close to the previous) is PSV polarization. 
Finally, doing very poorly (at least with distance d close to the 
relay), we have self-polarization. 

For the remaining testing, we use PSV polarization, 
because it has better resistance coverage than the self-
polarized mho and is most commonly used in the industry. 
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    2)  Network-Based or Equation-Based Approach to 
Determine Rfmax 

When trying to determine the mho ground element 
resistance coverage as a function of the fault location, there 
are two possible methods. 

The first approach is to solve the network equations as 
indicated in Appendix A, obtain the voltage and current at the 
relay for a particular fault resistance value, and introduce these 
values in (10). Repeat the same process with increasing values 
of fault resistance until inequality (10) no longer holds. The 
maximum fault resistance found provides the value of the 
resistance coverage Rfmax. This process has to be repeated for 
different values of fault location in order to get a plot of the 
resistance coverage as a function of the fault location. 

The second approach is to solve the equation of Rfmax as a 
function of the network parameters when this equation is 
available. 

Because the search for an analytic equation providing the 
value of Rfmax as a function of the network parameters in the 
case of the PSV polarization has been so far unsuccessful, we 
use the network-based solution in the next subsections. 

    3)  Impact of the Line Loading 
For the network of Fig. 3, Fig. 5 shows the resistance 

coverage for the Phase A ground mho element when the line 
loading takes the values –10, 0, and 10 degrees. Obviously, 
the line loading has some impact on the resistance coverage. 

The fact that the line loading has some effect on the 
resistance coverage calculation indicates that the factor KI in 
(16) cannot be set simply to 1. 

R
es

is
ta

nc
e 

C
ov

er
ag

e 
(

)

 

Fig. 5. Impact on resistance coverage of the line loading for the mho ground 
element 

    4)  Impact of the Set Distance Reach D 
If we look at (18), we can see that the mho element 

distance reach setting D is involved in the solution of the 
resistance coverage. This indicates that Rfmax will depend 
upon the distance setting D. This is illustrated in Fig. 6, where 
D has been set successively to 0.6, 0.8, and 1. The line loading 
angle has been set to 0 degrees (no load) for these plots. 

Obviously, the maximum fault resistance detected occurs at 
distance to fault d equal to zero. It is interesting to observe 
from Fig. 6 that the resistance coverage at the distance reach 
setting D is always equal to zero. 

Fig. 6 allows us to infer that the distance reach setting and 
the resistance coverage in a mho element are interrelated: 
setting the distance reach D will determine the resistance 
coverage characteristic. 

 

Fig. 6. Impact on resistance coverage of distance reach setting for the mho 
ground element at zero load 

    5)  Definition of a Reference Network 
For the remaining testing of the resistance coverage of the 

Phase A ground mho element, we define a reference network 
corresponding to the following: 

 The network of Fig. 3 with a loading angle  of 
0 degrees. 

 Use of PSV polarization. 
 Distance reach D set at 100 percent of line length. 

The source-to-line impedance ratio (SIR) of the reference 
network for the left source is 0.57 and for the right source is 
1.14. In this paper, the SIR is defined as the ratio of the source 
PS impedance divided by the element impedance reach. Both 
SIRs are considered as having low values or as being strong 
sources. 

In Fig. 7 through Fig. 12, the plot of the resistance 
coverage for the ground mho element corresponding to the 
reference network is shown in red. 

    6)  Impact of the Right Source Impedance 
In Fig. 7, the impact of the right source impedances is 

evaluated by setting its PS and ZS impedances at 0.1 and 
10 times their original values. A last test is performed with the 
impedances close to infinity. 

Obviously, when compared with the reference network, the 
effect of reducing the right source sequence impedances is to 
reduce the resistance coverage. Conversely, increasing the 
right source sequence impedances leads to greater resistance 
coverage. The right source sequence impedances getting 
closer to infinity corresponds to a radial system, and greater 
resistance coverage is obviously achieved. 

0
0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

Distance to the Fault (pu)

Reference

ZR1 • 0.1, ZR0 • 0.1

ZR1 • 10, ZR0 • 10

ZR1 = ZR0 = Infinity

 

Fig. 7. Impact on resistance coverage of the right source sequence 
impedances for the mho ground element 
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    7)  Impact of the Left Source Impedance 
In Fig. 8, the impact of the left source impedances is 

evaluated by setting its PS and ZS impedances at 0.1 and 
10 times their original values. 

Increasing the left source sequence impedances has the 
effect of reducing the resistance coverage. 

Decreasing the left source sequence impedances has a 
mixed effect: the resistance coverage is reduced for small 
values of the distance to the fault d and it is slightly increased 
for higher values of the fault distance d. 

0
0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

Distance to the Fault (pu)

Reference
ZS1 • 0.1, ZS0 • 0.1

ZS1 • 10, ZS0 • 10

 

Fig. 8. Impact on resistance coverage of the left source sequence 
impedances for the mho ground element 

An additional test has been performed in Fig. 9 where the 
right source sequence impedances have been set to infinity 
and the left source original PS and ZS impedances multiplied 
by factors of 0.1 and 10. 

We can see in Fig. 9 that with no infeed to the fault (radial 
system), the impact of the source behind the relay sequence 
impedance variation is practically the inverse of the previous 
case. There is greater resistance coverage with the increase of 
the impedance magnitudes and lesser resistance coverage with 
the decrease of the impedance magnitudes. 

 

Fig. 9. Impact on resistance coverage of the left source sequence 
impedances with a radial network for the mho ground element 

    8)  Impact of the Transmission Line Impedance 
As shown in Fig. 10, increasing the transmission line 

sequence impedances by a factor of 10 has the effect of 
substantially increasing the mho element resistance coverage. 

Conversely, decreasing the line sequence impedances by a 
factor of 10 has the effect of substantially reducing the 
element resistance coverage. 

0
0 0.2 0.4 0.6 0.8 1

40

60

80

100

120

Distance to the Fault (pu)

20
ZL1 • 0.1, ZL0 • 0.1

ZL1 • 10, ZL0 • 10

Reference

 

Fig. 10. Impact on resistance coverage of the transmission line sequence 
impedances for the mho ground element 

Based on the testing results in Fig. 7 and Fig. 10, we can 
infer that a substantial resistance coverage would be achieved 
with a radial system and a very long line. This is demonstrated 
in Fig. 11, where the right source impedances have been set to 
infinity and the line impedances multiplied by 10. 

 

Fig. 11. Mho ground element optimum resistance coverage 

    9)  Impact of the Open Breaker Condition at the End of the 
Line 

The open breaker condition at the end of the line 
corresponds simply to the simulated case where the remote 
source has sequence impedances close to infinity. 

In Fig. 7, with the breaker closed, the ground mho element 
resistance coverage corresponds to the red plot noted as the 
reference. When the breaker opens, the resistance coverage 
plot corresponds to the plot identified as ZR1 = ZR0 = 
Infinity. 

Obviously, the breaker status at the end of the line leads to 
two different resistance coverage characteristics. 

    10)  Impact of a Parallel Line 
The impact of a parallel line as shown for the network in 

Fig. 2 can be assessed by looking at Fig. 12, where the 
factor n multiplying the sequence impedances (from Fig. 2, 
n = n1 = n0) of the adjacent line has been set successively to 
0.25, 1, and 4. 

Obviously as the factor n is increased, the resistance 
coverage characteristic tends to get closer to the reference 
network plot in red. Overall, a parallel line cannot be 
considered to have a significant impact. 
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Fig. 12. Impact on resistance coverage of parallel line for the mho ground 
element 

IV.  THE RESISTANCE COVERAGE OF  
QUADRILATERAL ELEMENTS 

A.  The Implementation of Quadrilateral Characteristics 

Quadrilateral distance characteristics can take various 
forms. Fig. 13 shows a typical characteristic. While the mho 
element is essentially self-directional and requires the 
computation of a single scalar product as in (10), the 
quadrilateral characteristic requires the implementation of a 
minimum of three independent elements: 

 A reactance element that determines the distance 
reach. 

 Two resistance blinders that determine the resistance 
reach setting. 

 One directional element that determines if the fault is 
forward or reverse. 

It is important to note here that the resistance blinder 
calculation is independent from the other elements. Because it 
constitutes the focus of this paper, the next subsections 
concentrate on the resistance calculation only. 

Reactance
Element

Right 
Resistance 

Blinder

Left 
Resistance

Blinder

Directional
Element

L1

 

Fig. 13. Quadrilateral characteristic components 

B.  How to Set the Resistance Reach 

There is a limit to the value given to the resistance reach 
Rset of a quadrilateral element. This limit is essentially 
imposed by the accuracy of the voltage and current 
transformers supplying the relay with respect to the phase 
angle. References [3] and [4] introduced formulas for the 

calculation of the maximum possible resistance reach value as 
a function of an error angle that is the sum of all possible 
phase angle errors. In [4], the maximum resistance reach value 
for a Zone 1 element is provided by: 

 
 

   L1
set.max set.pu

sin
R • 1 Z • ZL1

sin




  
 


 (21) 

In (21),  is the total phase angle error, L1 is the line PS 
impedance angle, Zset.pu is the reactance element reach in per-

unit value, and finally, ZL1  is the line PS impedance 

magnitude. 
If we assume a total phase angle error of 2 degrees and a 

distance reach of 80 percent of the line, we have the following 
for the maximum possible resistance reach of the quadrilateral 
elements installed at the ends of the network transmission line: 

 
 
 set.max

sin 88
R • 0.2 •17.47 100.06 

sin 2


  


 (22) 

In the remaining testing, we use a resistance reach of 
80 ohms. 

C.  First Example of Resistance Blinder Calculation 

Our first example for a quadrilateral element resistance 
blinder calculation is a field-proven ground element 
implemented in numerous relays [2] [5]. It is called a Type I 
resistance blinder in this paper. 

In [5], the resistance calculation is performed using the 
following formula and the result is compared with the 
resistance reach setting Rset: 

   
    

*

set
*

rAG

Im VA • ZL1• IA K0 • I0
R

3
Im • I2 I0 • ZL1• IA K0• I0

2



 


    
 

 (23) 

For the resistance blinder type expressed by (23) and the 
elementary network shown in Fig. 1, it is possible to derive an 
exact mathematical expression providing the resistance 
coverage as a function of the resistance reach setting and the 
network parameters. The derivation of this expression is 
provided in Appendix B. The mathematical relation is: 

  max setRf R • G1 C1,C0,K0,   (24) 

with the G1 function equal to: 

 

 
 

 

 

j

j

G1 C1,C0,K0,

C1 C03
Im • • e

2 2 • C1 C0 • 1 K0

3
Im • e

2• C1 C0 • 1 K0

 

 

 

   
       
  
 

     

 (25) 

Equation (24) allows us to determine the element resistance 
coverage as a function of the resistance setting, the line 
impedance positive-sequence angle , the fault current 
distribution factors C1 and C0, and the zero-sequence 
compensating factor K0. 
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The only assumption made in the derivation of (25) is that 
the line loading is zero. If we make the further assumption of a 
homogeneous network, meaning the following angles are 
equal: 

 C1 C0 K0      (26) 

an even simpler and still very accurate function G2 replaces 
G1 in (24): 

    real C1 C0
G2 C1,C0

2


  (27) 

In (27), the maximum value that the function G2 can take 
is 1. We can then infer that for the Type I blinder, the 
resistance coverage can never be more than the resistance 
reach setting Rset under any conditions. 

    1)  Comparison Between the Network-Based and 
Equation-Based Approaches 

Unlike the case of the mho ground element, we have been 
successful in deriving two equations that provide the 
resistance coverage as a function of the network parameters 
for the resistance blinder of Type I corresponding to (23). 

In order to demonstrate the accuracy of (25) and (27), 
Fig. 14 shows three plots for the resistance coverage for the 
reference network of Fig. 3 using the two possible approaches: 
the approach based on the network resolution and the 
approach based on the solutions of (25) and (27). The three 
plots are almost identical. A very slight accuracy advantage 
should be given to (25), however. 

 

Fig. 14. Resistance coverage characteristic comparison between three 
solutions with the quadrilateral Type I blinder 

    2)  Impact of Line Loading on the Ground Quadrilateral 
Resistance Coverage 

In order to assess the effect of line loading on the resistance 
coverage, the angle of the right source has been set 
successively to 10, 0, and –10 degrees in Fig. 15. 

Obviously, the line loading does not have any impact on 
the resistance coverage. This justifies the assumption made in 
the derivation of (25) and (27) that KI could be set to 1. It also 
indicates that the resistance blinder calculation as provided by 
(23) is immune to any balanced load effect. 

In view of this result, the remaining testing for the Type I 
resistance blinder will be done at no-load condition. 
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Fig. 15. Resistance coverage characteristics with three different load angles 
for the quadrilateral Type I blinder 

    3)  Impact of the Right Source Sequence Impedances 
When the right source impedances ZR1 and ZR0 become 

very large, both current distribution factors C1 and C0 become 
close to 1. Under this condition,  the function G2 that 
determines the resistance coverage in (27) will tend toward 
unity. 

  
ZR1 & ZR0 C1 & C0 1

C1 & C0 1 G2 C1,C0 1

 

  
 (28) 

Alternatively, when the right source sequence impedances 
tend toward 0 and the distance to the fault tends toward 1, the 
sequence current distribution factors will tend toward 0. Under 
this condition, the function G2 will tend toward zero. 

 
   
   
ZR1 & ZR0 0  & d 1 C1 & C0 0

C1 & C0 0 G2 C1,C0 0

   

  
 (29) 

In Fig. 16, the right source sequence impedances (ZR1 and 
ZR0) have been successively multiplied by 0.1, 10, and 100. 

Fig. 16 demonstrates what has been inferred 
mathematically: with large remote source impedance values, 
the resistance coverage becomes a quasi horizontal line, the 
level of which is equal to the resistance reach setting Rset. 
When the right source sequence impedances become smaller, 
the resistance coverage tends to zero when the fault is at the 
end of the line. 

 

Fig. 16. Resistance coverage impact of the right source sequence 
impedances for the quadrilateral Type I blinder 
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    4)  Impact of the Left Source Sequence Impedances 
Looking at the expression of C1 and C0 in (2) and (3) and 

at the expression of G2 in (27), we can infer that if we 
increase the value of the left source impedances, C1 and C0 
will decrease because ZS1 and ZS0 are in the denominators of 
C1 and C0. When C1 and C0 in turn decrease, we have to 
expect the function G2 to decrease. Consequently, the 
resistance coverage will be smaller. 

 
 

ZS1 & ZS0 C1 & C0

C1 & C0 G2 C1,C0

 

 
 (30) 

Alternatively, if we decrease the value of the left source 
impedances, C1 and C0 will increase. When C1 and C0 in turn 
increase, we have to expect the function G2 to increase. 
Consequently, the resistance coverage will be larger. 

 
 

ZS1 & ZS0 C1 & C0

C1 & C0 G2 C1,C0

 

 
 (31) 

This has been verified in the simulation shown in Fig. 17, 
where ZS1 and ZS0 from the reference network have been 
multiplied successively by 0.1 and 10. The impact on the 
resistance coverage corresponds to what has been 
mathematically inferred by examination of the theoretical 
resistance coverage of (27). 

 

Fig. 17. Resistance coverage impact of the left source sequence impedances 
for the quadrilateral Type I blinder 

    5)  Difference in Resistance Coverage Between the Relays 
at the Two Line Ends 

In order to have the same resistance coverage for the two 
quadrilateral elements installed at each end of the line, we 
would need to have the same source impedances behind the 
two relays. This is something rarely achieved and would be 
difficult to verify due to the changing topology of the 
networks. 

Fig. 18 shows the resistance coverage for the two 
quadrilateral elements installed at the two line ends of the 
reference network. The two elements are set to have the same 
resistance reach of 80 ohms. At a distance of 0.3 pu of the line 
length, for example, there is an obvious difference in 
resistance coverage between the two elements. Any resistive 
fault with a resistance value falling between the two 
characteristics will be detected by the left element but not by 
the right one. This situation could be corrected by increasing 
the resistance reach on the right element, but there is not much 
margin, given the maximum value of the reach setting as 
provided by (22). 

0
0 0.2 0.4 0.6 0.8 1

40

60

80

100

Distance to the Fault From Left Relay (pu)

20

Coverage from the left element

Coverage from the right element

Difference in coverage at d = 0.3 pu from the left

 

Fig. 18. Difference in resistance coverage between the left and right 
quadrilateral ground elements with the Type I blinder 

    6)  Impact of the Open Breaker at the Line End 
We assume again that the reference network transmission 

line is protected at both ends by quadrilateral elements. As 
discussed in the previous paragraphs, the possibility exists that 
the left-side element will assert first and open the left line 
breaker. With this new condition, the right-side element will 
see its resistance coverage change because the right source 
sequence impedances have now become infinite. Depending 
upon if the left-side breaker is open or not, the right-side 
quadrilateral element will switch between the two resistance 
coverage characteristics shown in Fig. 19. 
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Fig. 19. Switch between two resistance coverage characteristics as a 
function of the remote-end breaker state for the quadrilateral Type I blinder 

    7)   Impact of a Parallel Line on the Resistance Coverage 
The last test on the current resistance blinder consists of 

adding a parallel line as shown in Fig. 2. 
We can still use equations equivalent to (25) and (27), but 

the current distribution factors have to be switched to the 
expressions indicated in (7) and (8) for the parallel lines so 
that we get: 

  max set P P PRf R • G1 C1 ,C0 K0,   (32) 

 

 
 

 

 

P P P

P P j

P P

j

P P

G1 C1 ,C0 ,K0,

C1 C03
Im • • e

2 2C1 C0 1 K0

3
Im • e

2C1 C0 1 K0

 

 

 

   
       
  
 

     

 (33) 

    P P
P P P

real C1 C0
G2 C1 ,C0

2


  (34) 
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Again, the solution based on (33) or (34) provides an 
almost perfect match with the solution based on the network 
resolution. 

With values for the impedance multiplier of 0.25, 1, and 4, 
Fig. 20 shows the impact of the parallel line on the resistance 
coverage in comparison with the reference model (network 
without the parallel line) in red. Obviously, the parallel line 
has an impact, particularly as the fault gets closer to the line 
end: the resistance coverage is reduced by more than a factor 
of 2 as n gets smaller (0.25 in the plot). 

 

Fig. 20. Resistance coverage impact of parallel line with no coupling for the 
quadrilateral Type I blinder 

D.  Other Examples of Resistance Blinder Calculations 

Other resistance blinder implementation principles have 
been used in relays. In [4], another approach was taken to 
perform the quadrilateral element resistance calculation and 
two resistance blinder principles were used. For the Phase A-
to-ground impedance loop, the first resistance blinder, called 
Type II, is calculated using (35). It is polarized using negative-
sequence (NS) current. 

 
 

   

*j

2 set*j

Im VA • I2 • e
R R

Im IA K0• I0 • I2 • e





 
   

   

 (35) 

For the second resistance blinder calculation, called 
Type III, (36) uses a combination of PS and NS current 
polarization. 

 
  

    

*j

2 set*j

Im VA • I1 I2 • e
R R

Im IA K0 • I0 • I1 I2 • e





    
    

 (36) 

It is worth underscoring that the only difference between 
the blinder resistance for Types II and III is that the PS current 
has been added in the polarizing quantity of Type III. For a 
Phase A-to-ground fault, the only difference between the 
positive- and negative-sequence currents at the relay location 
is the load current. So it can be inferred that both blinders will 
have the same performance at no-load condition. 

As indicated in Appendix C, making the assumption that 
there is no load and that the system is homogeneous, the 
following relation can be derived between the maximum 

detectable fault resistance and the resistance setting for the 
Type II or III blinder: 

 
 
set

max
R

R
Rf

real K
  (37) 

Type II or III resistance blinders are sensitive to the load. 
So, (37) can be used only at no load. Fig. 21 shows the 
resistance coverage for the network of Fig. 3 as seen from an 
element installed on the line left terminal using the two 
methods: the network-based solution and equation-based 
solution. The two solutions give results within 5 percent. 

 

Fig. 21. Resistance coverage comparison between two solutions for the 
Type II or III blinder at zero load 

An optimum resistance sensitivity, superior to the Type I 
blinder, is achieved in [4] by combining the two blinder 
calculation (Type II and Type III) logic outputs through an OR 
gate. The outcome of this combination, called Type II&III, has 
a resistance coverage that is generally (but not always) above 
the resistance reach setting. 

In Fig. 22, the variation of the resistance coverage for the 
Type II&III blinder is shown for load angles of –10, 0, and 
10 degrees. As already noted, the resistance can get well 
above the resistance reach setting. 
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Fig. 22. Resistance coverage characteristics for Type II&III blinder at 
various load angles 

Other than the line loading, the conclusions drawn for the 
Type I resistance blinder on the impact of the network 
parameters on the resistance coverage are applicable to the 
Type II&III resistance calculation. However, as noted 
previously, there are two major differences: 

 The Type II&III blinder calculation could have 
resistance coverage higher than the resistance reach so 
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that it will be more sensitive than Type I, given that 
the resistance reach Rset is the same. 

 The Type II&III blinder calculation is sensitive to the 
load. 

As an example of the impact of the network parameters on 
the Type II&III resistance blinder combination, Fig. 23 shows 
the impact of the variation of the right source sequence 
impedances at zero load and with the same resistance setting 
as before (80 ohms). The plots in Fig. 23 are similar to the 
plots in Fig. 16, with the difference that the Type II&III 
blinder turns out to have more resistance coverage than Type I 
for the same resistance reach. 

 

Fig. 23. Impact on the resistance coverage of the right source sequence 
impedances for the Type II&III blinder at zero load angle 

V.  CONCLUSION 

The objective of this paper is to illustrate through a number 
of examples the impact of the network parameters on the 
resistance coverage of mho and quadrilateral ground elements. 

Based on the testing discussed in this paper, the following 
observations can be made: 

 Unlike some quadrilateral resistance blinder types, it is 
difficult with mho elements to derive an analytic 
expression that will provide a direct relation between 
the element resistance coverage and the network 
parameters. 

 The resistance coverage of a mho element will always 
be zero at the element set distance reach. 

 A very large resistance coverage for a ground mho 
element will take place with a radial system (ZR1 and 
ZR0 approaching infinity) and a long transmission 
line. 

 The main difference between the mho and 
quadrilateral elements is that a resistance reach setting 
is introduced for the latter that allows superior 
resistance coverage. 

 With mho elements, the resistance coverage is 
dependent upon the distance reach setting. With 
quadrilateral elements, it is completely independent. 

 The Type I resistance blinder described in this paper 
has a maximum resistance coverage equal to the 
resistance reach setting. This blinder type is 
independent of load. 

 The Type II&III resistance blinder described in this 
paper allows a resistance coverage that could be 

greater than the resistance reach setting. The 
Type II&III resistance blinder therefore allows better 
sensitivity than Type I. However, resistance coverage 
will depend upon the load. 

 With quadrilateral elements, regardless of the 
resistance blinder type, the maximum detected fault 
resistance occurs with faults close to the relay. The 
coverage is proportionally reduced as the distance to 
the fault increases. With radial lines, the resistance 
coverage becomes uniform and is practically not 
affected by the fault location. 

 With a mho element, a long transmission line naturally 
calls for a better resistance coverage. With a 
quadrilateral element, a long transmission line allows 
setting a higher resistance reach so that the element 
retains its main advantage. 

VI.  APPENDIX A: RESOLUTION OF A SINGLE-PHASE A-TO-
GROUND FAULT USING THE SEQUENCE NETWORKS 

The superposition principle is used to resolve a single-
Phase A-to-ground fault for the network of Fig. 1. The 
corresponding sequence network is shown in Fig. 24. 

d ZL2

L

ZS2

(1 – d) ZL2

Ef

R

ZR2

Z2

d ZL1

L

ZS1

(1 – d) ZL1

R

ZR1

Z1

d ZL0

L

ZS0

(1 – d) ZL0

R

ZR0

Z0

I1F
N1

I0F
N0

I2F
N2

+

–

Rf

Rf

Rf

 

Fig. 24. Phase A-to-ground pure-fault sequence network 
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The load current is: 

 
 j

LD

1 e • VA
I

ZS1 ZL1 ZR1




 
 (38) 

The voltage at the fault point before the fault is: 

  LDEf VA I • ZS1 d • ZL1    (39) 

The Phase A voltage at the relay before the fault is: 

 pre LDVA Ef d • ZL1• I   (40) 

The equivalent PS impedance is: 

 
    ZS1 d ZL1 • ZR1 1 d ZL1

Z1 Z2
ZS1 ZL1 ZR1

  
 

 
 (41) 

The equivalent ZS impedance is: 

 
    ZS0 d ZL0 • ZR0 1 d ZL0

Z0
ZS0 ZL0 ZR0

  


 
 (42) 

The sequence currents at the fault point are: 

 
Ef

I1F I2F I0F
2 • Z1 Z0 3Rf

  
 

 (43) 

The sequence currents at the relay are: 

 
I1 I2 C1• I1F

I0 C0• I0F

 


 (44) 

The expressions of the PS and ZS current distribution 
factors C1 and C0 are provided by (2) and (3). 

Applying the superposition principle, the Phase A current 
and voltage at the relay location are: 

 
LD

pre

IA I 2 • C1• I1F C0 • I0F

VA VA 2 • C1• I1F • ZS1 C0 • I0F • ZS0

  
  

 (45) 

If we replace VApre in (45) by its expression in (40), we 
get: 

LDVA Ef d • ZL1• I 2 • C1• I1F• ZS1 C0• I0F• ZS0     (46) 

From the sequence network in Fig. 24, Ef can be otherwise 
expressed as: 

 
 

 
Ef 2 • C1• I1F • ZS1 d • ZL1

C0 • I0F • ZS0 d • ZL0 3• I1F • Rf

  

 
 (47) 

In (46), if we replace Ef with its value as expressed in (47), 
we get for VA: 

 LDVA d • ZL1• I 2 • C1• I1F•

d • ZL1 C0• I0F• d • ZL0

 


 (48) 

In (48), if we add up and subtract, to the right side of the 
equal sign, the same term m • ZL1• C0 • I0F , we get for VA: 

 LD

VA d • ZL1•

I 2 • C1• I1F C0 • I0F •K0• C0 • I0F 3• I1F• Rf



   
 (49) 

In this last expression, K0 is the zero-sequence 
compensation factor. 

 
ZL0 ZL1

K0
ZL1


  (50) 

The compensated current to be supplied for the Phase A-to-
ground fault impedance loop is: 

 IR IA K0• I0   (51) 

The ratio of VA as expressed in (49) over IR becomes 
simply: 

 
VA 3• I1F • Rf

d • ZL1•
IR IR

  (52) 

In (51), if we replace IA by its value as provided by (45), 
we get for IR: 

 LDIR I 2 • C1• I1F C0 • I1F K0 • C0• I1F     (53) 

From (53), we can extract I1F: 

 
 
LDIR I

I1F
2• C1 C0• 1 K0




 
 (54) 

If we replace I1F in (52) by its expression in (54), we get: 

 
 

  
LD3• IR I • RfVA

d • ZL1•
IR IR • 2 • C1 C0• 1 K0




 
 (55) 

We define KR as: 

 R
3

K
2 • C1 C0• (1 K0)


 

 (56) 

We define KI as: 

 I
LD

IR
K

IR I



 (57) 

The apparent impedance for the Phase A-to-ground fault 
can finally be expressed as: 

 R

I

Rf • KVA
d • ZL1•

IR K
  (58) 

Fig. 25 represents the sequence network for the case of the 
parallel lines of Fig. 2. The same equations as previously 
derived for the single-line case can be used by replacing the 
equivalent impedances Z1, Z2, and Z0 with ZP1, ZP2, and 
ZP0. The current distribution factors for the parallel lines can 
be determined by performing the proper delta-to-star 
impedance transformation in Fig. 25 and are provided in (7) 
and (8). 
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Fig. 25. Phase A-to-ground pure-fault sequence network with parallel line 

VII.  APPENDIX B: RELATION BETWEEN RF AND RSET FOR A 

TYPE I QUADRILATERAL ELEMENT RESISTANCE BLINDER 

We have for the calculated resistance: 

   
    

*

AG
*

Im VA • ZL1• IA K0• I0
R

3
Im • I2 I0 • ZL1• IA K0 • I0

2

 


       
  

 (59) 

Assume the angle of the line is expressed as: 

 jZL1 e    (60) 

Applying (1), VA can be expressed as: 

  R

I

K
VA d • ZL1 Rf • • IA K0 • I0R

K

 
   
 

 (61) 

Introducing the value of VA in the numerator of (59): 

2jR

I

K
NUM Im d • ZL1 Rf • • e • IA K0• I0

K
        

   
 (62) 

we have: 

  jIm d • ZLI • e 0    (63) 

so that we end up finally with: 

  2 jR

I

K
NUM IA K0• I0 • Im Rf • • e

K
  

   
 

 (64) 

The denominator can be expressed as: 

    *j3
DEN Im • C1 C0 • I1F• e • IA K0 • I0

2
      

  
 (65) 

so that the ratio can now be expressed as: 

 

    

AG

2 jR

I

*j

R

K
IA K0 • I0 • Im Rf • • e

K

3
Im • C1 C0 • I1F• e • IA K0• I0

2

 





 
  

 
      
  

 (66) 

or: 

   

jR

I
AG *

j
2

K
Im Rf • • e

K
R

IA K0• I03
Im C1 C0 • I1F• e

2 IA K0• I0

 

 

 
 
 

   
  

 (67) 

or: 

 
 

 

jR

I
AG j

K
Im Rf • • e

K
R

C1 C0 • I1F• e3
Im

2 IA K0 • I0

 

 

 
 
 

  
   

 (68) 

Looking at the sequence network of Fig. 24 for a Phase A-
to-ground fault, we have for the compensated current: 

  LDIA K0 • I0 I 2C1 C0 • I1F K0 • C0• I1F      (69) 

so that we have: 

 
 
 

AG

jR

I

j

LD

set

R

K
Im Rf • • e

K

C1 C0 I1F3
Im • • e

2 2C1 C0 1 K0 I1F I

R

 

 



 
 
 

   
          



 (70) 

If we assume that there is no load (ILD = 0 and KI = 1), we 
end up finally with: 

 
 

 
 

j
R

AG set
j

Im Rf • K • e
R R

C1 C03
Im • • e

2 2C1 C0 1 K0

 

 

 
   
       

 (71) 

Equation (71) can be otherwise expressed as: 

 

 
 

 

j
set

j
R

C1 C03
R • Im • • e

2 2C1 C0 1 K0
Rf

Im K • e

 

 

   
         (72) 
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The element resistance coverage is obtained by switching 
the inequality sign to the equality sign: 

 

 
 

 

j
set

max j
R

C1 C03
R • Im • • e

2 2C1 C0 1 K0
Rf

Im K • e

 

 

   
         (73) 

VIII.  APPENDIX C: RELATION BETWEEN RF AND RSET  
FOR TYPES II AND III QUADRILATERAL ELEMENT  

RESISTANCE BLINDERS 

For the Type II quadrilateral, the resistance calculation uses 
the negative-sequence current polarization and is provided by 
the following: 

 
 

   

*j

2 set*j

Im VA • I2 • e
R R

Im IA k0• I0 • I2 • e





 
   

   

 (74) 

As in Appendix B, we assume for the line angle: 

 jZL1 e    (75) 

Introducing the expression of VA as provided by (61), we 
get for the numerator of (74): 

   * j
R

I

NUM

Rf
Im d • ZL1 K • IA K0 • I0 • I2 • e

K
 



  
   

   

 (76) 

At no load (KI = 1) and if the system is homogeneous, the 
next equality applies: 

   *Im IA K0• I0 • I2 0     (77) 

so that we are left for (74) with: 

 
 

 
j

R

2 setj

Im Rf • K • e
R R

Im e

 

 
   (78) 

Equation (78) can be otherwise expressed as: 

 
 
set

R

R
Rf

real K
  (79) 

It has already been underscored that at no-load condition, 
both blinder Types II and III have the same performance. 
Because (79) is only valid at no-load condition, we can say 
that it is applicable to both blinder Types II and III. 
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