SEL-710-5 Motor Protection Relay

Induction and Synchronous Motor Control and Protection, Broken Rotor Bar Detection, and Arc-Flash Detection

New Features

- Extended support for LEA voltage sensor inputs and Rogowski coil or low power current transformer (LPCT) inputs. The optional Slot Z card allows low energy voltage and currents analogs selection.
- ► Improved Motor Start Report (MSR) to include exciter voltage (VEX) and exciter current (IEX).
- > Added loss of potential (LOP) check for slip dependent thermal model.
- > Reduced minimum setting for overcurrent element to five percent of nominal current.

Major Features and Benefits

The SEL-710-5 Motor Protection Relay provides an exceptional combination of protection, monitoring, control, and communication in an industrial package.

- Standard Motor Protection and Control Features. Protect and/or control low- or medium-voltage three-phase motors, and variable frequency drive (VFD) fed motors, with an enhanced thermal model that includes:
 - Locked rotor starts
 - ➤ Time-between-starts
 - > Starts-per-hour
 - ➤ Antibackspin timer
 - ➤ Load loss, current unbalance

- ➤ Load jam/stalled rotor
- ➤ Phase reversal
- ➤ Breaker/contactor failure
- > Positive temperature coefficient (PTC)
- Thermistor over temperature

- 2
- Phase, negative-sequence, residual ground instantaneous, and inverse-time overcurrent elements
- ➤ Load control
- > Star-delta starting
- ≻ Two-speed control
- > Forward/reverse start control.
- Broken rotor bar detection
- > Rotor slip calculation
- > Virtual speed switch
- > Motor coast time
- > Undervoltage
- ➤ Overvoltage

- > Inverse-time over- and undervoltage elements
- > Underpower
- > Reactive power
- > Phase reversal
- Power factor correction
- > Frequency
- Loss of potential
- Breaker failure protection
- Incipient cable fault detection
- Asset monitoring capabilities

> Motor Start Trending

➤ Breaker Monitoring

➤ Incipient Cable Fault Detection

➤ Molded Case Circuit Breaker Health

≻ Load Profiling

- RTD-based protection. As many as 10 RTDs can be monitored using an internal RTD card or as many as 12 RTDs using an SEL-2600 RTD Module with the ST[®] option.
- Optional Synchronous Motor Protection and Control. Use the SEL-710-5 with an optional synchronous motor/ differential card (SYNCH/3 DIFF ACI) that provides starting control, power factor or reactive power closed loop regulation control, and loss-of-field, out-of-step, loss-of-synchronism (pull-out), field resistance, field voltage, and field current protection elements.
- ➤ Optional Differential Protection. Use the SEL-710-5 with optional current differential protection available with fourchannel arc-flash card (4 AFDI/3 DIFF ACI) or synchronous motor protection and control card (SYNCH/3 DIFF ACI).
- ➤ Optional Arc-Flash Protection. Use the SEL-710-5 with optional four-channel fiber-optic arc-flash detector inputs and differential protection elements (4 AFDI/3 DIFF ACI) or the eight-channel fiber-optic arc-flash detector inputs (8 AFDI). Settable arc-flash phase and neutral overcurrent elements combined with arc-flash light detection elements provide secure, reliable, and fast-acting arc-flash event protection.
- ➤ Optional Low-Energy Analog (LEA) Voltage Sensor Inputs and Rogowski Coil/LPCT Currents Inputs. The LEA input range for voltages is as high as 8 Vac rms. Based on the nominal feeder current, the relay automatically sets the gain for the LEA current channel inputs, which allows for a wide range of primary currents.
- ► Operator Controls. Start and stop the motor easily with eight programmable front-panel pushbuttons, each with two tricolored LEDs. Also, the SEL-710-5 provides 32 local and 32 remote control bits to help manage relay operations.
- ► Integrated Web Server. Log in to the built-in web server to view metering and monitoring data and download events, Sequential Events Recorder (SER), etc. Also, use the server to view relay settings and to perform relay firmware upgrades.
- ► Relay and Logic Settings Software. Reduce engineering costs for relay settings and logic programming with ACSELERATOR QuickSet[®] SEL-5030 Software. Tools in QuickSet make it easy to develop SELOGIC[®] control equations. Use the built-in phasor display to verify proper CT polarity and phasing.
- Metering and Asset Monitoring. Eliminate separately mounted metering devices with built-in metering functions. Analyze Sequential Events Recorder (SER) reports and oscillographic event reports for rapid commissioning, testing, and post-fault diagnostics. Monitor the health of your asset and accompanying devices using these asset monitoring capabilities:
 - > Vibration Monitoring
 - ➤ Motor Monitoring Using Fourier Analysis
 - ➤ Broken Rotor Bar Detection
 - ≻ Motor Start Report
 - ➤ Motor Maintenance Report
 - > Motor Operating Statistics
- ► Front Panel HMI. Navigate the relay HMI through the use of a 2 x 16-character LCD or optional 5-inch, color, 800 x 480-pixel touchscreen display.

- ➤ Additional Standard Features. Use other standard features, including Modbus[®] RTU, MIRRORED BITS[®] communications, built-in web server, load profile, breaker wear monitoring, 128 remote analogs, support for 12 external RTDs (SEL-2600), IRIG-B input, advanced SELOGIC control equations, configurable labels, and an SEL-2812 compatible ST fiber-optic serial port.
- Optional Communications Protocols. Optional communications protocols include IEC 61850 Edition 2, Modbus TCP/IP, DNP3 serial and LAN/WAN, EtherNet/IP, Simple Network Time Protocol (SNTP), IEEE 1588-2008 firmware-based Precision Time Protocol (PTP), IEC 60870-5-103, RSTP, and PRP.
- ► Optional Communications Ports. Elective communications ports include EIA-232 or EIA-485 multimode fiberoptic serial port and single or dual, copper or fiber-optic Ethernet ports.
- Optional I/O Cards. Digital and analog I/O options include 4 AI/4 AO, 8 AI, 4 DI/4 DO, 8 DI, 8 DO, 3 DI/4 DO/1 AO, 4 DI/3 DO, and 14 DI. An optional 10 internal RTD card is also available for the SEL-710-5. Conformal coating for chemically harsh and/or high-moisture environments is available as an option.
- ► Language Support. Choose English or Spanish for your serial ports, including the front-panel serial port. The standard relay front-panel overlay is in English; a Spanish overlay is available as an ordering option.

Model Comparison Guide: Exploring the SEL-710-5 Options

The SEL-710-5 protection and control features depend on the model selected. The models are configured with current/voltage input cards on Slot Z and specific option cards on Slot E in the relay.

Slot Z cards are assigned a two-digit code beginning with the number 8 for traditional current and voltage input card or L1 for LEA inputs in the SEL-710-5 Model Options Table (MOT). For example, 81 in the MOT for Slot Z indicates a SELECT 4 ACI/3 AVI card with 3phase ac current inputs (1 A nominal), neutral ac current input (1 A nominal), and 3-phase ac voltage inputs (300 Vac). L1 in the MOT for Slot Z indicates 3-phase Rogowski coil or Low Power Current Transformer (RJ-45 inputs) and 3-phase LEA voltage sensor (RJ-45 inputs).

Slot E cards are assigned a two-digit code beginning with the number 7 in the SEL-710-5 Model Options Table (MOT). For example, 74 in the MOT for Slot E indicates a SELECT 4 AFDI/3 DIFF ACI card with 4 arc-flash detection channels and 3 differential current channels.

Table 1 shows the different applications for which the SEL-710-5 can be used. Traditional current inputs are 1 A or 5 A nominal rating and voltage inputs are 300 V continuous rating.

Model	Application	Slot E		Slot Z	
Model	Application	Card (MOT Digits)	Inputs	Card (MOT Digits)	Inputs
07105xxxxxx	Induction Motor Protection	None (0X)	NA	All Models	All Models
07105 <i>xxx</i> 74 <i>xx</i>	Induction Motor With 4 Arc- Flash Detection Channels and Differential Protection	4 AFDI/3 DIFF ACI (74)	AF1, AF2, AF3, AF4, IA87, IB87, IC87, COM	4 ACI/3 AVI (81, 82, 83, 85, 86, 87, L1)	IA, IB, IC, IN, VA, VB, VC, N
07105 <i>xxx</i> 76 <i>xx</i>	Induction Motor With 8 Arc- Flash Detection Channels	8 AFDI (76)	AF1, AF2, AF3, AF4, AF5, AF6, AF7, AF8		
07105 <i>xxx</i> 75 <i>xx</i>	Synchronous Motor Protection With Differential Protection	SYNCH/3 DIFF ACI (75)	VDR+, VDR–, VEX+, VEX–, IEX+, IEX–, IA87, IB87, IC87, COM		

Table 1	Card E and Card Z Selections for SEL-710-5

Functional Overview

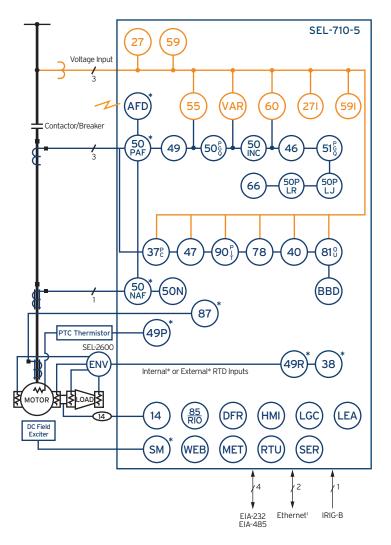


Figure 1 Functional Diagram

- ► Sequential Events Recorder
- Event Reports, Motor Start Reports, Motor Operating Statistics, Load Profiles, and Motor Start Trends
- ► Web Server
- ➤ SEL ASCII, Ethernet*, Modbus TCP/IP*, IEC 61850 Edition 2*, IEC 60870-5-103*, EtherNet/IP, RSTP*, PRP*, DNP3 LAN/WAN*, DNP3 Serial*, Modbus RTU, Telnet*, FTP*, PTP*, SNTP*, IEEE 1588-2008 firmware-based PTP*, and DeviceNet* Communications
- ► Eight Front-Panel Target LEDs, Six of Which are Programmable
- ► Two Inputs and Three Outputs Standard
- I/O Expansion*–Additional Contact Inputs, Contact Outputs, Analog Inputs, Analog Outputs, and RTD Inputs
- Single or Dual Ethernet, Copper or Fiber-Optic Communications Port*
- ► PTC Input*
- Battery-Backed Clock, IRIG-B Time**, SNTP Synchronization*

- ► Instantaneous Metering
- Eight Programmable Pushbuttons With Two Tricolor LEDs Each
- ► Advanced SELOGIC Control Equations
- ► 32 Programmable Display Messages
- ► MIRRORED BITS Communications
- ► Forward/Reverse Control
- Reduced Voltage Starting
- ► Two-Speed Motor Control
- ► Breaker Wear Monitoring
- VFD Motor Protection
- ► Arc-Flash Protection*
- ► Differential Protection*
- ► Synchronous Motor Control and Protection*
- ► Asset Monitoring Capabilities
- Front-Panel HMI with 2 x 16-Character LCD or Optional 5-Inch, Color, 800 x 480-Pixel Touchscreen Display*

*Optional Functions—Select When Ordering

**IRIG-B is only available on models without PTC Input

Figure 1 Functional Diagram

Protection Features

Motor Thermal Protection

The SEL-710-5 uses a patented thermal model to provide locked rotor, running overload, and negative-sequence current unbalance protection. The thermal element accurately tracks the heating resulting from load current and current unbalance while the motor is accelerating and running. The relay expresses the present motor thermal estimate as % Thermal Capacity Used for stator and rotor. When either stator or rotor % Thermal Capacity reaches 100 percent, the relay trips. The SEL-710-5 motor thermal element provides integrated protection for all of the following motor operating conditions:

- Locked rotor starts
- ► Running overload

- Unbalance current/negative-sequence current heating
- ► Repeated or frequent starting

The SEL-710-5 dynamically calculates motor slip to precisely track motor thermal capacity used (TCU) with the thermal model. The rotor resistance changes depending on slip and generates heat, especially during starting, when current and slip are highest. By correctly calculating rotor TCU, the thermal model reduces the time between starts. It also gives the motor more time to reach its rated speed before tripping. Use the Virtual Speed Switch to back up the locked rotor protection. Also use the Coast Time setting to significantly reduce the wait time before the next start may be allowed by thermal lockout. Motors cool faster during coasting.

Overcurrent Protection

The SEL-710-5 provides complete overcurrent protection with one set of three-phase CTs and one neutral CT input. Phase overcurrent protection is provided for threephase input. The following instantaneous overcurrent elements are part of the SEL-710-5 base configuration.

- Two instantaneous phase overcurrent (50P) elements. These phase elements operate on the maximum of the phase currents. Peak detection algorithms are used to enhance element sensitivity during high fault current conditions, where severe CT saturation may occur.
- Two instantaneous negative-sequence overcurrent (50Q) elements. These elements operate on the calculated negative-sequence current for threephase input.
- ➤ Two residual overcurrent (50G) elements. These elements use calculated residual (3I0) current levels from phase currents for ground fault detection.
- ➤ Two neutral-overcurrent (50N) elements. These elements operate on neutral content for three-phase input. Use the 1 A or 5 A rating, or the 2.5 mA rating for sensitive neutral-current applications for high-impedance and ungrounded applications where currents are very low.

Time-Overcurrent Elements

One level of the inverse time element is available for phases A, B, C, and negative-sequence overcurrent. Also, two levels of inverse time elements are available for maximum phase and residual overcurrent. These timeovercurrent elements support the IEC and US (IEEE) time-overcurrent characteristics. Electromechanical disc reset capabilities are provided for all time-overcurrent elements.

Differential Elements

The SEL-710-5 optionally provides two definite-time delayed differential overcurrent elements. The relay can be used either with core-balance differential CTs or with separate CTs on the source and neutral sides of the motor.

Load-Loss, Load-Jam, and Frequent-Starting Protection

The SEL-710-5 trips for load-jam and load-loss conditions. Load-loss detection causes an alarm and a trip when the relay detects such a condition. Load-jam protection trips the motor quickly to prevent overheating from stall conditions. The relay uses settable starts-per-hour and minimum time-between-starts protection functions to provide frequent-starting protection. The relay stores motor starting and thermal data in nonvolatile memory to prevent motor damage (caused by overheating resulting from frequent starts) from loss of relay power.

Current Unbalance Element

Unbalanced motor terminal voltages cause unbalanced stator currents to flow into the motor. The negative-sequence current component of the unbalanced current causes significant rotor heating. While the SEL-710-5 motor thermal element models the heating effect of the negative-sequence current, you may want the additional unbalanced and single-phasing protection offered by the current unbalance element.

Start Monitoring/Incomplete Sequence

If motor starting has not finished or the motor has not synchronized, in the case of synchronous motor by the START_T time, the relay produces a trip if start motor time-out asserts and is included in the TRIP equation. The start monitoring is independent of the overload protection provided by the thermal model.

Incipient Cable Fault Detection

Cable insulation degrades over time. The incipient cable fault detector can monitor for self-extinguishing, halfcycle overcurrent events that precede typical cable insulation failure. Monitoring the number of incipient faults can provide an early warning of cable insulation breakdown. This information can be used for preventative maintenance.

Star-Delta (Wye-Delta) Starting

The SEL-710-5 issues the command to switch from star to delta (wye to delta) as soon as the starting current drops near the rated value in star (wye). The relay will make the change to delta within the maximum permissible time for star operation (if used), regardless of the magnitude of the starting current.

You can switch the maximum permissible time setting for star operation on or off. If it is off, the change to delta is made solely based on the motor current.

Start Inhibit Protection

The SEL-710-5 provides start inhibit protection when the protected motor reaches a specific maximum number of starts-per-hour or minimum time-between-starts. Also, in

certain pump applications, fluid flowing backward through the pump may spin the pump motor for a short time after the motor is stopped. Any attempt to start the motor during this time can be damaging. The SEL-710-5 prevents motor starts during the backspin period. The relay will maintain the trip signal until enough time passes for the motor to be safely restarted.

Phase Reversal Protection

Relay phase reversal protection detects motor phase rotation and trips after a delay if phase rotation is incorrect. The SEL-710-5 provides this protection even if phase voltages are not available.

Speed Switch and Virtual Speed Switch

When the motor is equipped with a speed switch, you may want to provide additional locked rotor protection by using the relay speed switch input. The relay can issue a warning or trip signal if the speed switch is not closed within the speed switch time delay after the motor start begins.

The SEL-710-5 offers a virtual speed switch (VSS) logic that can be used when a physical speed switch is not available. The logic also includes monitoring of the physical speed switch, if present, to enhance its reliability.

Arc-Flash Protection

An arcing short circuit or a ground fault in low- or medium-voltage switchgear can cause very serious equipment damage and personal injury. They can also cause prolonged and expensive downtime.

The best way to minimize the impact of an arc-flash event is to reduce the detection and circuit breaker tripping times. Conventional protection may need several cycles to detect the resulting overcurrent fault and trip the breaker. In some cases, there may not be sufficient current to detect an overcurrent fault. Tripping may be delayed hundreds of milliseconds for sensitivity and selectivity reasons in some applications.

The arc-flash detection-based (AFD) protection can act on the circuit breaker in a few milliseconds (2–5 ms). This fast response can limit the arc-flash energy thus preventing injury to personnel and limiting or eliminating equipment damage. The arc-flash protection option for the SEL-710-5 adds eight-channel fiber-optic AFD inputs and protection elements or a four-channel fiberoptic AFD card that includes differential protection. Each channel has a fiber-optic receiver and an LEDsourced fiber-optic transmitter that continuously selftests and monitors the optical circuit to detect and alarm for any malfunction. There are two types of applications supported by the SEL-710-5.

Point-Sensor Application

The arc is detected by transmitting the arc-flash light captured by the optical diffuser (located appropriately in the switchgear) over a 1000 μ m plastic fiber-optic cable to the optical detector in the relay. The relay performs sensor loopback tests on the optical system using an LED-based transmitter to transmit light pulses at regular intervals to the point sensor assembly (over a second fiber-optic cable). If the relay optical receiver does not detect this light, the relay declares a malfunction and alarms. *Figure 2* (top) shows a diagram for the point-sensor application.

Clear-Jacketed Fiber Sensor Application

A second option for AFD uses a clear-jacketed 1000 μ m plastic fiber-optic cable located in the switchgear equipment. One end of the fiber is connected to the optical detector in the relay and the other end is connected to the LED transmitter in the relay. The LED transmitter injects periodic light pulses into the fiber as a sensor loopback test to verify the integrity of the loop. The relay detects and alarms for any malfunction. *Figure 2* (bottom) shows a diagram for the clear-jacketed fiber sensor application.

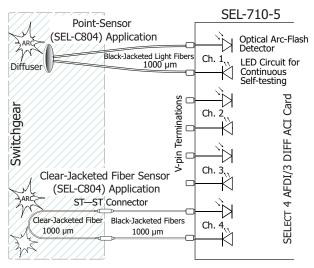


Figure 2 Arc-Flash Detection System

The SEL-710-5 AFD system has four or eight channels per relay that can be configured for the point-sensor or the clear-jacketed fiber sensor applications. The optional fast hybrid outputs (high speed and high current) of the relay provide fast-acting trip outputs to the circuit breaker (less than 50 μ s). The fast breaker tripping can help avoid serious damage or personal injury in the case of an arc-flash event. The relay also provides light metering and light event capture to aid in setting the relay and capturing the arc-flash event for records and analysis. Settable arc-flash phase and neutral overcurrent elements are combined with arc-flash light detection elements for secure, reliable, and fast-acting arc-flash event protection.

Over- and Undervoltage Elements

When you connect the SEL-710-5 voltage inputs to phase-to-phase connected VTs the relay provides two levels of phase-to-phase over- and undervoltage elements. When you connect the SEL-710-5 voltage inputs to phase-toneutral connected VTs, the relay provides two levels of phase-to-neutral over- and undervoltage elements.

Inverse-Time Over- and Undervoltage Elements

Custom programmable, IEC equation-based inverse-time overvoltage (59I) and undervoltage (27I) elements in the SEL-710-5 add flexibility in coordinating protection and control schemes. Inverse-time overvoltage and inversetime undervoltage elements operate on the measured phase-to-neutral voltages, or phase-to-phase voltages.

Loss-of-Potential Logic

The SEL-710-5 includes loss-of-potential (LOP) logic that detects one, two, or three blown potential fuses. This patented LOP logic is unique because it does not require settings and is universally applicable. The LOP feature allows the blocking of protection elements to add security during fuse failure.

Over- and Underfrequency Protection

Four levels of secure overfrequency (810) or underfrequency (81U) elements detect true frequency disturbances. Use the independently time-delayed output of these elements to shed load or trip local generation.

RTD Thermal Protection

When the SEL-710-5 is equipped with either an optional 10 RTD input expansion card or an external SEL-2600 RTD Module with as many as 12 RTD inputs, you can program as many as 12 thermal elements in the relay for

two levels of thermal protection per element. Each RTD input has an alarm and trip thermal pickup setting in degrees C, has open and shorted RTD detection, and is compatible with the following three-wire RTD types:

- > PT100 (100 Ω platinum)
- NI100 (100 Ω nickel)
- NI120 (120 Ω nickel)
- CU10 (10 Ω copper)

Additionally, the winding RTDs and the ambient temperature RTD can be configured and used to bias the thermal model and thermal protection.

VAR Protection

The SEL-710-5 provides two levels of definite-time delayed positive and negative reactive power elements. If the positive or negative reactive power exceeds the appropriate level for longer than the time-delay setting, the relay can issue a warning or trip signal.

The reactive power elements are disabled when the motor is stopped or starting. These elements can be used to detect synchronous motor out-of-step or loss-of-field conditions.

Underpower Function

The SEL-710-5 provides two levels of definite-time delayed underpower elements. If the real three-phase power falls below the warning or trip level for longer than the time-delay setting, the relay can issue a warning or trip signal. The underpower elements are disabled when the motor is stopped or starting. These elements operate in addition to the load-loss function, and you can use them to detect motor load-loss and other underpower conditions.

Power Factor Elements

The SEL-710-5 provides two levels of definite-time delayed lead and lag power factor elements. If the measured power factor falls below the leading or lagging level for longer than the time-delay setting, the relay can issue a warning or trip signal. The power factor elements are disabled when the motor is stopped or starting. These elements can be used to detect synchronous motor out-of-step or loss-of-field conditions.

Load Control Function

The SEL-710-5 is capable of controlling external devices based on the parameter load control selection. You can select current, power, or stator thermal capacity used to operate auxiliary outputs. Load control is active only when the motor is in the running state.

When the selected parameter exceeds the load control upper setting level for one second, the auxiliary relay assigned to LOADUP will operate. The auxiliary relay will reset when the parameter drops below the upper level setting for one second.

When the selected parameter drops below the load control lower setting level for one second, the auxiliary relay assigned to LOADLOW will operate. The auxiliary relay will reset when the parameter is above the lower-level setting for one second. You can use this feature to control the motor load within set limits.

Synchronous Motor Protection and Starting Control

The SEL-710-5 provides two levels of field over- and undervoltage, field over- and undercurrent, and field resistance protection. Also, loss-of-field (40), out-of-step (78), and loss-of-synchronism (pull-out) protection are available as options. This relay synchronizes automatically during starting by applying dc excitation voltage to the motor field at correct slip frequency and rotor angle to lock the motor to synchronous speed. The following event report shows the synchronous motor start sequence with slip at 10 percent of nominal. The relay offers voltage discharge resistor (VDR) based or stator current based slip measurement for field closing control.

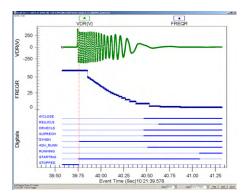


Figure 3 Event Capture of Synchronous Motor Starting

Loss-of-Field Protection (40)

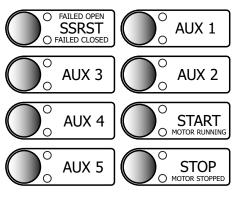
Two offset positive-sequence mho elements detect loss-of-field conditions. Settable time delays help reject power swings that pass through the machine impedance characteristic. The loss-of-field elements are supervised by the torque-control setting.

Out-of-Step Protection (78)

The SEL-710-5 relays use a single or double blinder scheme, depending on user selection, to detect an out-ofstep condition. In addition to the blinders, the scheme uses an mho circle that restricts the coverage of the outof-step function to the necessary extent. Furthermore, both schemes contain current supervision and torque control to supervise the operation of the out-of-step element.

Loss-of-Synchronism (Pull-out) Protection

The SEL-710-5 includes a loss-of-synchronism (pullout) detection logic that operates when the motor power factor falls below a setting. The loss-of-synchronism logic also operates when the maximum phase current is greater than 3.5 times the full-load current of the motor.

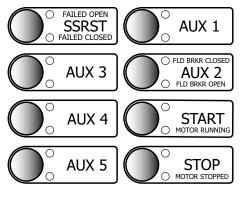

Variable Frequency Drive (VFD)

When the VFD application is selected, the relay uses rms current magnitudes instead of fundamental magnitude for the phase/residual overcurrent elements and the motor thermal model. If voltage inputs are used, make sure the inputs are nearly sinusoidal without any multiple zero crossings. Exercise caution when using power and frequency elements.

Operator Controls

Operator controls eliminate traditional panel control switches. Eight conveniently sized operator controls, each with two programmable tricolor LEDs, are located on the relay front panel. You can set the SER to track operator controls. You can also change operator control functions using SELOGIC control equations. The operator control descriptions in *Figure 4* are for factory-set logic.

All the AUX operator controls and LEDs are user programmable. Note that all text can be changed with the configurable labels kit.


Standard Operator Control

All text can be changed with the configurable labels.

Use the **START** and **STOP** pushbuttons to start and trip the connected motor. Program with intentional time delays to support operational requirements for breaker mounted relays. This allows the operator to press the **START** or **STOP** pushbutton, then move to an alternate location before the breaker command is executed.

In the SEL-710-5 with touchscreen display, you can also use the front-panel operator control pushbuttons to jump to a specific screen while using them for START/STOP operations, etc. You can program the selectable operator pushbutton screen settings under the **Touchscreen** settings category in QuickSet and map the button to a specific screen.

Optional Synchronous Motor Operator Control

Built-In Web Server

Every Ethernet-equipped SEL-710-5 includes a built-in web server. Use any standard web browser to interface with the relay using any standard web browser to perform the following actions:

- ► Log in with password protection.
- ► Safely read the relay settings.
- Verify the relay self-test status and view the relay configuration.
- ► Inspect meter reports.
- ► Download SER and event reports.
- ► Upload new firmware (firmware upgrade).

Figure 5 shows the fundamental metering screen that can be accessed by clicking **Meter > Fundamental**. Use the Meter menu to view all the available relay metering statistics.

SEL SEL-710-5 SYNCHRONOUS N			Mon, Aug 5, 2019 13:19 ACC [Logo
• Meter	SEL-710-5 Fundamental Metering		
Fundamental Thermal Energy	SEL-710-5 SYNCHRONOUS MTR	Date: 08/05/2019 Time: 13:19:10.118 Time Source: Internal	Fundamental 50/60 Hz content only, no harmonics.
Max/Min RMS	Mag (A pri.) IA IB Angle (deg) -2.7 -122.0	IC IN IG 100.3 0.0 2.0 118.4 -24.1 -88.8	
Remote Analogs Reports	Ave Curr Mag (A pri.) 100. Mot Load (XFLAL) 0. Neg-Seg Curr 312 (A pri.) 1	10	
Communications	Diff Phase Curr (A pri.) 0.1	1887 IC87 0.1 0.1	
 Relay Status Settings 	VAB VAC VBC Mag (V pri.) 2340.0 2341.0 Angle (deg) 0.0 -59.0	VCA 4047.0 150-5	
	Avg Phase (V pri.) 2918 Neg-Seq Volt 3V2 (V pri.) 2374 Voltage Imb (%) 27	9	
	Real Power (kW) 472 Reactive Power (kVAR) 21 Apparent Power (kVA) 473 Power Factor(LEAD) 1.00		
	Frequency (Hz) 60.00		
	Field Voltage (V dc) 0.0 Field Current (A dc) 0.0 Field Resistance (Ohm) open		

Figure 5 Fundamental Meter Report Webpage

Figure 6 shows the Group 1 settings webpage. You can view the settings of each relay settings class by selecting **Settings** and the respective relay settings class.

SEL STACHRONOUS	ITR Moor, J	ACC [Logo
Meter Reports	SEL-210-3 Group 1 Settings Active Group 1	L
Communications Relay Status	Grans Settings	Active Group Settings
Group 1 Group 2 Group 3	ESPECTRE: V 155 100F SCHERTH 1 847156_1 94557 1.75 SF 1.15 1451 1.60 STC 1 4.070 TC 104 0 FS 1500 1.100 STC 1 4.070 TC 104 0 FS 1500 1.1000 STC 1 4.070 TC 104 0 FS 1500 1.1000 STC 1 4.070 TC 104 0 FS 1500 1.1000 TC 104 0 FS 1500 1.1000 TC 104 0 FS 1500	
Group 4 Logic 1 Logic 2	19979 := 10.00 39700 := 0.00 19939 := 0FF 5000P := 0FF 50029 := 0FF 5001P := 0FF 50029 := 0FF 5001P := 3.00 5002P := 0.00 ESODIC := 15.00	
Logic 3 Logic 3 Logic 4 Global Report Pront P	5140 i 14 097 1525 i 14 097 1526 i 14 097 1526 i 10 097 1527 i 10 097 1528 i 10 097 1528 i 10 097 1529 i 10 097 1529 i 10 097 1520 i	
Modbus Port F Port 1	LLTPU := 0FF LLAPU := 0FF 44187 := 30 544427 := 30 544427 := 10	
Port 2 Port 3 Port 4	ESTAR_D == N NAXSTART== OFF TESDLY == OFF ABSDLY == OFF	
ONP Map 1 ONP Map 2 ONP Map 3 1870 Map	2.77 2.75 μ → 0.77 99:05 μ → 0.77 V550 + + × 2.75 μ → 0.04 2.75 μ → 0.04 2.75 μ → 0.04	
	27999 i= 04F 27910 i= 0.3 27929 i= 04F 59929 i= 1.10 59920 i= 0.3 59929 i= 04F 12711 i= N 12722 i= N	

Figure 6 Group 1 Settings Webpage

You can upgrade the relay firmware through the relay web server by clicking **System > File Management**, available at Access Level 2, and selecting the firmware upgrade file. *Figure 7* shows the firmware upgrade webpage.

SEL-710-5	د254.137.15/protected/N_R ۹ خ گ ا سے SEL-710-5 File Manage	Wed, Oct 16, 2019 13:35:
Meter Add Reports Communications Relay Status Settings System File Management	SEL-710-3 File Hanagement Upgrade Firmware Firmware SEL-710-3-X277-V0-2004003- 020101012 Firmware File: Upgrade Firmware	2AC [Lopoul Upgrade firmware a *.ads file on your computer. After the transfer, the relay will rebot and you will loss your connection. To verify that the upgrade was successful, log back into the SE:12:10-3 on anywaite back

Figure 7 Upgrade the Relay Firmware From the File Management Webpage

Relay and Logic Settings Software

QuickSet simplifies settings and provides analytical support for the SEL-710-5. With QuickSet you have several ways to create and manage relay settings:

- Develop settings offline with an intelligent settings editor that only allows valid settings.
- Create SELOGIC control equations with a dragand-drop text editor.
- ► Configure proper settings using online help.
- ► Organize settings with the relay database manager.
- Load and retrieve settings using a simple PC communications link.

With QuickSet you can verify settings and analyze events; and analyze power system events with the integrated waveform and harmonic analysis tools.

The following features of QuickSet can help you monitor, commission, and test the SEL-710-5:

- The PC interface remotely retrieves power system data.
- The HMI monitors meter data, Relay Word bits, and output contacts status during testing. The control window allows resetting of metering quantities and other control functions.

Use the Bay Control to design new bay screens and edit existing bay screens by launching ACSELERATOR Bay Screen Builder SEL-5036 Software for SEL-710-5 relays with the touchscreen display.

ACSELERATOR Bay Screen Builder SEL-5036 Software

The SEL-710-5 with the touchscreen display layout option provides you with the ability to design bay configuration screens to meet your system needs. You can display the bay configuration as a single-line diagram (SLD) on the touchscreen. You can use ANSI and IEC symbols, along with analog and digital labels, for the SLD to indicate the status and control of the breaker and two- or three-position disconnects, bus voltages, and power flow through the breaker. In addition to SLDs, you can design the screens to show the status of various relay elements via Relay Word bits or to show analog quantities for commissioning or day-to-day operations. You can design these screens with the help of Bay Screen Builder in conjunction with QuickSet. Bay Screen Builder provides an intuitive and powerful interface to design bay screens to meet your application needs.

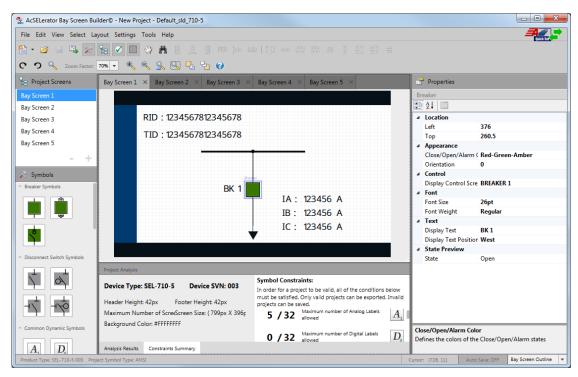


Figure 8 Bay Screen Builder

The SEL-710-5, depending on the model selected, provides extensive metering capabilities. See *Specifications on page 32* for metering and power measurement accuracies. As shown in *Table 2*, metered quantities include phase voltages and currents; sequence voltages and currents; power, frequency, and energy; and maximum/ minimum logging of selected quantities. The relay reports all metered quantities in primary quantities (current in A primary and voltage in V primary).

Table 2 Metering Capabilities

Types of Metering					
Instantaneous Remote Analogs Energy	Differential Math Variables RMS	Max/Min Light	Analog Inputs Thermal		
Quantities		Description			
Currents IA, IB, IC, IN, IG,	IAV, 3I2, UBI		l ground current (IG = 3I0 = IA + IB + IC), average ence current, current imbalance		
Voltages VA, VB, VC		Wye-connected voltage	e inputs		
Voltages VAB, VBC, VCA		Delta-connected voltag	ge inputs		
Voltage VAVE, 3V2, UBV		Average voltage, negat	tive-sequence voltage, voltage imbalance		
Power kW kVAR kVA		Three-phase kilowatts,	Three-phase kilowatts, kilovars, and kilovolt-amps		
Energy MWh3P, MVARh3P-IN, MVARh3P-OUT, MVAh3P		Three-phase megawatt	Three-phase megawatt-hours, megavar-hours, and megavolt-amp-hours		
Power Factor PF		Three-phase power fac	tor (leading or lagging)		
IA87, IB87, IC87		Differential phase curr	Differential phase current inputs		
Frequency, FREQ (Hz)		Instantaneous relay fre	Instantaneous relay frequency		
Field Voltage, Field Curren	t, Field Resistance	Exciter voltage, exciter	r current, field resistance		
Light Intensity (%) LS1-LS8		Arc-flash light inputs i	n percentage of full scale		
AIx01–AIx08		Analog Inputs			
MV01-MV32		Math Variables			
RA001-RA128		Remote Analogs			
RTD1-RTD12		RTD temperature measure	surement (degrees C)		
Stator TCU, Rotor TCU		% of Thermal Capacity	y Used		

Asset Monitoring

To monitor the health of your motor asset and accompanying devices, the SEL-710-5 supports the following asset monitoring capabilities:

- ► Vibration Monitoring
- ► Motor Monitoring Using Fourier Analysis
- ► Broken Rotor Bar Detection
- ➤ Motor Start Report
- ► Motor Maintenance Report

- ► Motor Operating Statistics
- ► Motor Start Trending
- ► Load Profiling
- ► Incipient Cable Fault Detection
- ► Molded Case Circuit Breaker Health
- ► Breaker Monitoring

With these asset monitoring capabilities, you can reduce production losses from unexpected equipment failures, and lower maintenance costs by switching to conditionbased maintenance schedules.

Load Profile

The SEL-710-5 features a programmable load profile (LDP) recorder that records as many as 17 metering quantities into nonvolatile memory at fixed time intervals. The LDP saves several days to several weeks of the most recent data depending on the LDP settings (6500 entries total).

Motor Start Report, Statistics, and Trend

The SEL-710-5 records motor start data for each motor start. The relay stores 30 of the latest motor start reports in nonvolatile memory. The motor start data are taken periodically after the starting current is detected. Use QuickSet to view the motor start report graphically. The SEL-710-5 also retains useful machine operating statistics information for the protected motor.

For each motor start, the relay stores a motor start report and adds these data to the motor start trending buffer. Motor start tending tracks motor start data for the past eighteen 30-day periods.

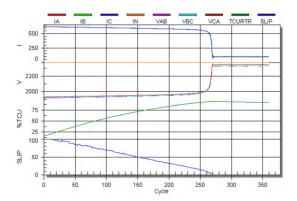


Figure 9 Graphical Display of Motor Start Report

Motor Maintenance Report

The SEL-710-5 computes and stores motor parameters, such as maximum starting current, minimum starting voltage, power on start/stop, and time to start/stop, and compares them to values obtained during a baseline run. If any of the values measured during a given run deviates significantly from the values measured during the baseline run, the SEL-710-5 asserts the Relay Word bit that corresponds to that value.

Improve Situational Awareness

Vibration Monitoring

The SEL-710-5 provides five vibration monitoring elements and each element can monitor a connected vibration transducer via analog inputs or math variables. Each vibration measurement is compared against a set of thresholds that define the four evaluation zones: Recently Commissioned, Acceptable, Warn, or Damaging. In SEL-710-5 models with the touchscreen display option, you can also view in a bar graph the measured values of vibration transducers connected to a motor.

Broken Rotor Bar Detection (BBD)

The SEL-710-5 detects broken rotor bars in induction motors by analyzing the current signatures under sufficient motor load conditions. BBD determines broken bars using the relative magnitudes of the signals at the sideband frequencies caused by the broken bars, with respect to the signal magnitudes at the system frequency. This normalization allows the algorithm to identify rotor failures independent of the motor characteristics.

This function provides the following features for motor monitoring and protection.

- ➤ A BBD element that uses motor current signature analysis for continuous monitoring and early detection of broken rotor bars.
- A history report that includes the date and time of the BBD operations along with the maximum sideband magnitude and associated frequency. These data help correlate the BBD operations to other events in the industrial plant.
- A Fourier transform function that calculates the frequency spectrum of the stator currents or voltages for motor diagnostics.
- ► The Fourier transform output can be viewed graphically via QuickSet.
- A compressed harmonic meter report for voltages and current.

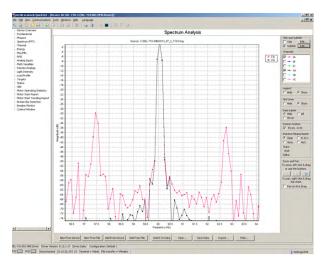


Figure 10 Spectrum of a Running Motor With Three Broken Bars

Event Reporting

Event reports and the SER simplify post-fault analysis and improve understanding of simple and complex protective scheme operations. In response to a user selected trigger, the voltage, current, frequency, and element status information contained in each event report confirms relay, scheme, and system performance for every fault. Decide how much detail is necessary when you request an event report (e.g., 1/4-cycle or 1/32-cycle resolution and filtered or raw analog data).

The relay stores as many as 9 of the most recent 180-cycle, 23 of the most recent 64-cycle, or 49 of the most recent 15-cycle event reports in nonvolatile memory. The relay always appends relay settings at the time of the event to the bottom of each event report.

The following analog data formats are available.

- 1/4-cycle or 1/32-cycle resolution, unfiltered or filtered analog, ASCII or Compressed ASCII reports
- ► 1/32-cycle resolution COMTRADE reports

The relay SER feature stores the latest 1024 entries. Use this feature to gain a broad perspective at a glance. An SER entry helps to monitor input/output change-of-state occurrences and element pickup/dropout.

Synchronized Measurements

The IRIG-B time-code input synchronizes the SEL-710-5 internal clock time to within $\pm 1 \ \mu s$ of the time-source input. Convenient sources for this time code are the SEL-2401 Satellite-Synchronized Clock, an SEL communications processor, or the SEL Real-Time Automation Controller (RTAC) (via Serial Port 2 or 3 on the SEL-710-5). For time accuracy specifications for metering and events, see *Specifications* on page 32.

Circuit Breaker Contact Wear Monitor

Circuit breakers experience mechanical and electrical wear every time they operate. Intelligent scheduling of breaker maintenance takes into account manufacturer's published data of contact wear versus interruption levels and operation count. With the breaker manufacturer's maintenance curve as input data, the SEL-710-5 breaker monitor feature compares this input data to the measured (unfiltered) ac current at the time of trip and the number of close-to-open operations.

Every time the breaker trips, it integrates the measured current information. When the result of this integration exceeds the breaker wear curve threshold (see *Figure 11*) the relay alarms via output contact, communications port, or front-panel display. This kind of information allows timely and economical scheduling of breaker maintenance.

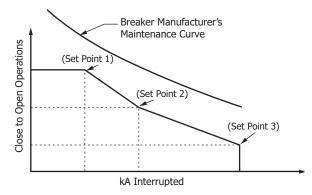


Figure 11 Breaker Contact Wear Curve and Settings

Molded Case Circuit Breaker Health

The SEL-710-5 can monitor molded case circuit breaker (MCCB) health by detecting CT saturation or A/D saturation during breaker opening. You can use this function to inspect the MCCB for damage and to do preventive maintenance.

IEC 61850 Test Mode

Test Mode allows you to test an in-service relay without accidentally operating control output contacts. Test Mode includes five different modes:

On: In On mode, the relay operates as normal; it reports IEC 61850 Mode/Behavior status as On and processes all inputs and outputs as normal. If the quality of the subscribed GOOSE messages satisfies the GOOSE processing, the relay processes the received GOOSE messages as valid.

Blocked: This mode is similar to On mode, except that the device does not trip any physical contact output.

Test: In Test mode, the relay processes valid incoming test signals and normal messages and operates physical contact outputs, if the outputs are triggered.

Test/Blocked: This is similar to Test mode, except that the device does not trip any physical contact outputs.

Off: The device does not process any incoming data or control commands (except commands to change the mode). All protection logic is disabled and all data quality is marked as invalid.

Simulation: In this mode, the relay continues to process normal GOOSE messages until a simulated GOOSE message is received for a subscription. Once a simulated GOOSE message is received, only simulated GOOSE messages are processed for that subscription. The simulated mode only terminates when LPHDSIM is returned to FALSE. When the relay is not in simulation mode, only normal GOOSE messages are processed for all subscriptions.

Touchscreen Display

You can order the SEL-710-5 with an optional touchscreen display (5-inch, color, 800 x 480-pixel). The touchscreen display makes relay data metering, monitoring, and control quick and efficient. The touchscreen display option in the SEL-710-5 features a straightforward application-driven control structure and includes intuitive and graphical screen designs.

The touchscreen display allows you to:

- ► View and control bay screens
- Access metering and monitoring data
- ➤ Inspect targets
- View event history, summary data, SER information, and motor start trend and motor operating statistics
- ► View relay status and configuration
- ► Control relay operations
- ► View and edit settings
- ► Enable the rotating display
- Program control pushbuttons to jump to a specific screen

You can navigate the touchscreen by tapping the folders and applications. The folders and applications of the Home screen are shown in *Figure 12*. Folders and applications are labeled according to functionality. Additional folder and application screens for the SEL-710-5 touchscreen display option can be seen in *Figure 13* through *Figure 23*.

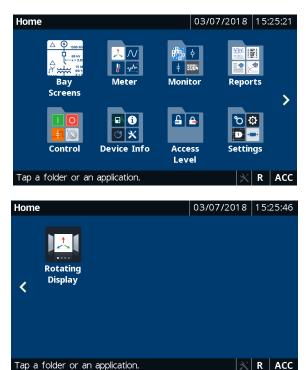


Figure 12 Home (Default FPHome Screen)

Bay Screens Application

The SEL-710-5 with the touchscreen display option provides you with the ability to design bay configuration screens to meet your system needs. The bay configuration can be displayed as an SLD on the touchscreen. You can create as many as five bay screens with one controllable breaker, eight controllable two-position disconnects, and two controllable three-position disconnects. ANSI and IEC symbols, along with analog and digital labels, are available for you to create detailed SLDs of the bay to indicate the status and control of the breaker and disconnects, bus voltages, and power flow through the breaker. *Figure 13* shows the default SLD for the touchscreen display option.

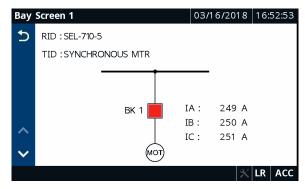


Figure 13 Default Bay Screen

Meter Folder Applications

The applications in the Meter folder are part-number dependent. Only those metering applications specific to your part number appear in the Meter folder. Tapping an application in the **Meter** folder shows you the report for that particular application. Tap the **Phasor** application to view the current and voltage phasors (see *Figure 14*).

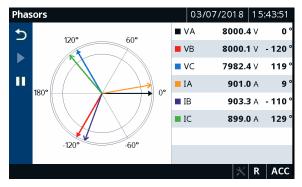


Figure 14 Meter Phasors

Tap the **Energy** application to view the energy metering quantities (see *Figure 15*). A reset feature is provided for the Energy, Max/Min, and Thermal applications. Tap the **Reset** button \bigcirc (see *Figure 15*) to navigate to the reset confirmation screen. Once you confirm the reset, the data are reset to zero.

Ener	gy Metering	03/07/2018 15:44:36
5	MWh3P (MWh)	MVAh3P (MVAh)
ා 0.00	40.094	43.500
	MVARh3P-IN (MVARh)	MVARh3P-OUT (MVARh)
	4.266	3.031
		LAST RESET
		02/14/2018 09:52:41
		💥 R ACC

Figure 15 Meter Energy

Monitor Folder Applications

Select the **Monitor** folder to navigate to the screen where you can access the Relay Word Bits, Digital Outputs, Digital Inputs, SELOGIC Counters, Breaker Wear, and Vibration applications. Tap the **Vibration** application (see *Figure 16*), which dynamically displays in a bar graph the measured values of vibration transducers connected to a motor.

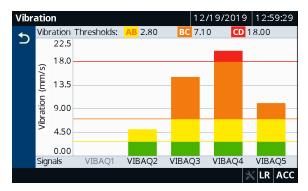


Figure 16 Vibration Monitoring

Reports Folder Applications

Select the **Reports** folder to navigate to the screen where you can access the Events, SER, Motor Start Trend (MST), and Motor Statistics (MOT) applications. Use these applications to view Events, SERs, MSTs, and MOTs. To view the event summary (see *Figure 17*) of a particular event record, you can tap the event record on the Event History screen. You can also trigger an event report from the Event History screen.

Ever	nt Summary			08/24/2019	21:11:59
Ð	Ref_Num	10005	Event	t Ove	rvolt Trip
	Date	08/24/2019	Time	21:09	9:11.463
	TARGETS	11000000			
	IA (A)	98.5	VAN	(V) 808	6
	IB (A)	100.6	VBN	(V) 810	7
	IC (A)	100.2	VCN	(V) 810	3
	IG (A)	1.12	VG (\	V) 7	
~	IN (A)	0.36			
				×	L ACC

Figure 17 Event Summary

Tap the **Sequential Events Recorder** application to view a history of the SER reports (see *Figure 18*).

Sequ	ential	Events Reco	order	02/08/	2017 08:51:56
Ð	#	DATE	TIME	ELEMENT	STATE
	105	01/25/2017	08:19:30.061	51G1T	Asserted
3	106	01/25/2017	08:19:29.194	SALARM	Deasserted
Ŵ	107	01/25/2017	08:19:28.198	51G1T	Deasserted
<u> </u>	108	01/25/2017	08:19:28.194	SALARM	Asserted
	109	01/25/2017	08:19:28.194	Relay	Settings Changed
~	110	01/25/2017	08:19:10.604	51G1T	Asserted
	111	01/25/2017	08:16:02.792	SALARM	Deasserted
$\mathbf{\mathbf{v}}$	112	01/25/2017	08:16:01.792	SALARM	Asserted
					🔆 LR ACC

Figure 18 Sequential Events Recorder

Mot	or Statistics		03/09/2018	11:	07:29
t	Operating History				
	Last Reset Date	03/0	7/2018		
	Last Reset Time	12:04	4:00		
	Running Time (ddd:hh:mm)	1:20:	22		
	Stopped Time (ddd:hh:mm)	> 0:0	2:40		
	Time Running (%)	94.3	}		
~	Total MWhr (MWhr)	74.4	ļ.		
	Number of Starts	1			
\sim	Emergency Starts	0			
			×	LR	ACC

Figure 19 Motor Statistics

Tapping the **Trash** button on the Event History, Sequential Events Report, Motor Start Trend, and Motor Statistics screens and confirming the delete action removes the records from the relay. See *Figure 19* for the Motor Statistics report and the Trash button.

Control Folders Applications

Select the **Control** folder to navigate to the screen where you can access the Start Motor, Stop Motor, Output Pulsing, Local Bits, Emergency Restart, and Reset TCU applications. Use the applications to perform a motor start command, motor stop command (see *Figure 20*), pulse output contacts (see *Figure 21*), control local bits, perform an emergency restart command, or to reset the thermal model.

Figure 20 Stop Motor Confirmation Screen

Digita	Digital Output Pulsing - Slot A 02/08/20				017	10:16:10
Ð	OUT101 1	OUT102 0	O	UT103 0		
~						
~						
Тар а	an output butto	n.			\times	LR 2AC

Figure 21 Digital Output Pulsing-Slot A

Device Info Folder Applications

Select the **Device Info** folder to navigate to the screen where you can access specific device information applications (Status, Configuration, Arc-Flash Diagnostics, and Trip & Diag. Messages) and the Reboot application.

Tap the **Status** application to view the relay status, firmware version, part number, etc. (see *Figure 22*).

Devi	ce Status		03/07/2018	15:48:50
5	Status	Relay Enabled		
	Serial No	3172140091		
	FID String	SEL-710-5-X213	8-V0-Z003002-	D2018022
	Part Number	071050E1B0X02	X7587A66X	
	SEL Display	1.0.7105.94		
	Customer Display	1.540384993		
~				
			*	R ACC

Figure 22 Status

Automation

Flexible Control Logic and Integration Features

The SEL-710-5 can be equipped with as many as four independently operated serial ports:

- ► EIA-232 port on the front panel
- ► EIA-232 or EIA-485 port on Slot B card in the rear
- ► EIA-232 fiber-optic port on Slot B card in the rear
- ► EIA-232 or EIA-485 port on the optional communications card in Slot C in the rear

To view the trip and diagnostic messages, tap the **Trip & Diag. Messages** application (see *Figure 23*). When a diagnostic failure, trip, lockout, or warning occurs, the relay displays the diagnostic message on the screen until it is either overriden by the restart of the rotating display, or the inactivity timer expires.

Trip,	Warning	j, & Diagnosti	c Messages	05/09/2018 17:56:44
5	TRIP	05/09/2018	17:55:17.200	Curr Imbal Trip
	LOCK	05/09/2018	2879 sec	TCU Lockout
	WARN	05/09/2018	17:56:24.968	Locked Rotor Warni
View Events or Status reports for details. X LR 2AC				

Figure 23 Trip and Diagnostics

Optionally, the relay supports single or dual, copper or fiber-optic Ethernet ports. The relay does not require special communications software. You can use any system that emulates a standard terminal system. Establish communication by connecting computers, modems, protocol converters, printers, an RTAC, SEL communications processor, SEL computing platform, SCADA serial port, and/or RTUs for local or remote communication. Refer to *Table 3* for a list of communications protocols available in the SEL-710-5.

Table 3Communications Protocols

Туре	Description	
Simple ASCII	Plain language commands for human and simple machine communications. Use for metering, setting, self- test status, event reporting, and other functions.	
Compressed ASCII	Comma-delimited ASCII data reports. Allows external devices to obtain relay data in an appropriate for- mat for direct import into spreadsheets and database programs. Data are checksum protected.	
Extended Fast Meter and Fast Operate	Binary protocol for machine-to-machine communications. Quickly updates SEL communications processors, RTUs, and other substation devices with metering infor- mation, relay element, I/O status, time-tags, open and close commands, and summary event reports. Data are checksum protected. Binary and ASCII protocols operate simultaneously over the same communica- tions lines so control operator metering information is not lost while a technician is transferring an event report.	
Fast SER Protocol	Provides SER events to an automated data collection system.	
Fast Message Protocol	Use this protocol to write Remote Analog Data from other SEL relays or communications processors via unsolicited writes.	
DNP3	Serial or Ethernet-based DNP3 protocols. Provides default and mappable DNP3 objects that include access to metering data, protection elements, Relay Word bits, contact I/O, targets, SER, relay summary event reports, and setting group selection.	
Modbus	Serial- or Ethernet-based Modbus with point remapping. Includes access to metering data, protection ele- ments, contact I/O, targets, SER, relay summary event reports, and setting groups.	
IEC 61850 Edition 2	Ethernet-based international standard for interoperability between intelligent devices in a substation. Oper- ates remote bits and I/O. Monitors Relay Word bits and analog quantities.	
DeviceNet	Allows for connection to a DeviceNet network for access to metering data, protection elements, contact I/ O, targets, and setting groups. The DeviceNet option has been discontinued and is no longer available to order as of September 25, 2017.	
SNTP	Ethernet-based protocol that provides time synchronization of the relay.	
IEEE 1588-2008 firmware- based PTP Ethernet-based protocol that provides time synchronization of the relay.		
PRP	Provides seamless recovery from any single Ethernet Network failure in a dual redundant Ethernet net- work, in accordance with IEC 62439-3.	
IEEE 60870-5-103 Serial communications protocol—International standard for interoperability between intelligen a substation.		
EtherNet/IP	Ethernet-based protocol that provides access to metering data, protection elements, targets, and contact I/O.	
RSTP	Provides faster recovery in response to changes and failures in switched mode dual redundant Ethernet net- works in accordance with IEEE 802.1Q-2014.	

Apply an SEL communications processor as the hub of a star network, with point-to-point fiber or copper connection between the hub and the SEL-710-5 (see *Figure 24*).

The communications processor supports external communications links including the public switched telephone network for engineering access to dial-out alerts and private line connections of the SCADA system.

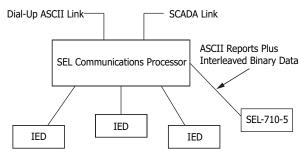


Figure 24 Example Communication System

SEL manufactures a variety of standard cables for connecting this and other relays to a variety of external devices. Consult your SEL representative for more information on cable availability.

SEL-710-5 control logic improves integration in the following ways.

- ► Replaces traditional panel control switches.
- Eliminate traditional panel control switches with 32 local bits. Set, clear, or pulse local bits with the front-panel pushbuttons and display. Program the local bits into your control scheme with SELOGIC control equations. Use the local bits to perform functions such as a trip test or a breaker trip/close.
- Eliminate RTU-to-relay wiring with 32 remote bits.

- Set, clear, or pulse remote bits using serial port commands. Program the remote bits into your control scheme with SELOGIC control equations. Use remote bits for SCADA-type control operations such as trip, close, and settings group selection.
- ► Replaces traditional latching relays.
- Replace as many as 32 traditional latching relays for such functions as "remote control enable" with latch bits. Program latch set and latch reset conditions with SELOGIC control equations. Set or reset the nonvolatile latch bits using optoisolated inputs, remote bits, local bits, or any programmable logic condition. The latch bits retain their state when the relay loses power.
- ► Replaces traditional indicating panel lights
- Replace traditional indicating panel lights with 32 programmable displays. Define custom messages (e.g., Breaker Open, Breaker Closed) to report power system or relay conditions on the frontpanel display. Use advanced SELOGIC control equations to control which messages the relay displays.
- ► Eliminates external timers
- Eliminate external timers for custom protection or control schemes with 32 general purpose SELOGIC control equation timers. Each timer has independent time-delay pickup and dropout settings. Program each timer input with any desired element (e.g., time qualify a current element). Assign the timer output to trip logic, transfer trip communications, or other control scheme logic.
- ► Eliminates settings changes
- Selectable setting groups make the SEL-710-5 ideal for applications requiring frequent setting changes and for adapting the protection to changing system conditions.

The relay stores three setting groups. Select the active setting group by optoisolated input, command, or other programmable conditions. Use these setting groups to cover a wide range of protection and control contingencies.

Switching setting groups switches logic and relay element settings. You can program groups for different operating conditions, such as feeder paralleling, station maintenance, seasonal operations, emergency contingencies, loading, source changes, and downstream relay setting changes.

Fast SER Protocol

SEL Fast SER Protocol provides SER events to an automated data collection system. SEL Fast SER Protocol is available on any rear serial port. Devices with embedded processing capability can use these messages to enable and accept unsolicited binary SER messages from SEL-710-5 relays.

SEL relays and communications processors have two separate data streams that share the same serial port. The normal serial interface consists of ASCII character commands and reports that are intelligible to people using a terminal or terminal emulation package. The binary data streams can interrupt the ASCII data stream to obtain information, and then allow the ASCII data stream to continue. This mechanism allows a single communications channel to be used for ASCII communications (e.g., transmission of a long event report) interleaved with short bursts of binary data to support fast acquisition of metering or SER data.

Fast Message Protocol

SEL Fast Message Protocol is a method to input or modify Remote Analogs in the SEL-710-5. These Remote Analogs can then be used in SEL Math or SELOGIC control equations. Remote Analogs can also be modified via Modbus, DNP3, and IEC 61850.

Ethernet Network Architectures

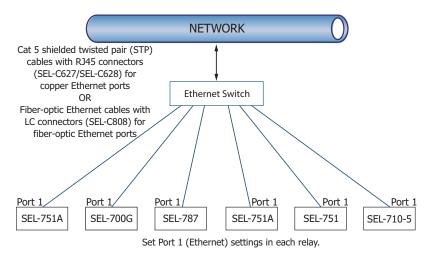


Figure 25 Simple Ethernet Network Configuration

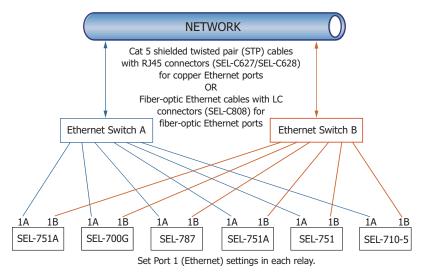
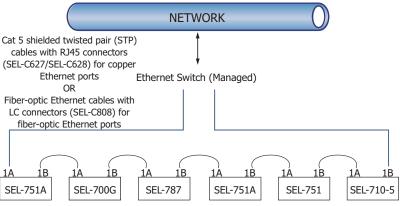



Figure 26 Ethernet Network Configuration With Dual Redundant Connections (Failover Mode)

Set Port 1 (Ethernet) settings in each relay.

Figure 27 Ethernet Network Configuration With Ring Structure (Switched Mode)

Additional Features

MIRRORED BITS Relay-to-Relay Communications

The SEL-patented MIRRORED BITS communications technology provides bidirectional relay-to-relay digital communications. MIRRORED BITS can operate independently on as many as two EIA-232 rear serial ports and one fiber-optic rear serial port on a single SEL-710-5.

This bidirectional digital communication creates eight additional virtual outputs (transmitted MIRRORED BITS) and eight additional virtual inputs (received MIRRORED BITS) for each serial port operating in the MIRRORED BITS mode (see *Figure 28*). Use these MIRRORED BITS to transmit/receive information between upstream relays and a downstream recloser control (e.g., SEL-351R) to enhance coordination and achieve faster tripping for downstream faults. MIRRORED BITS technology also helps reduce total scheme operating time by eliminating the need to assert output contacts to transmit information.

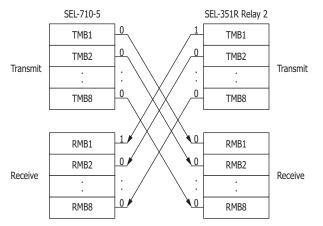


Figure 28 MIRRORED BITS Transmit and Receive Bits

Status and Trip Target LEDs

The SEL-710-5 includes 24 status and trip target tricolor LEDs on the front panel. When shipped from the factory, all LEDs are predefined and fixed in settings. You can

reprogram these LEDs for specific applications. This combination of targets is explained and shown in *Figure 32*. Some front-panel relabeling of LEDs may be needed if you reprogram them for unique or specific applications (see *Configurable Labels*).

Configurable Labels

Use the configurable labels to relabel the operator controls and LEDs to suit the installation requirements. This feature includes preprinted labels (with factory default text), blank label media, and a Microsoft[®] Word template on CD-ROM. This allows quick, professional-looking labels for the SEL-710-5. Labels may also be customized without the use of a PC by writing the new label on the blank stock provided.

The ability to customize the control and indication features allows specific utility or industry procedures to be implemented without the need for adhesive labels. All of the figures in this data sheet show the factory default labels of the SEL-710-5, including the standard model shown in *Figure 32*.

Web Server

Web Server allows you to communicate with the relay via the Ethernet Port without the need for additional communication software (web browser required). Web Server allows you to access metering and monitoring data, and also supports firmware upgrade.

Firmware Download Via Ethernet Ports

Relay firmware can be securely downloaded to your relay via the Ethernet port. The firmware is digitally signed to prevent malicious modification. Additionally, the Ethernet firmware download allows you to access and update all your network relays simultaneously.

Relay Dimensions

CHASSIS

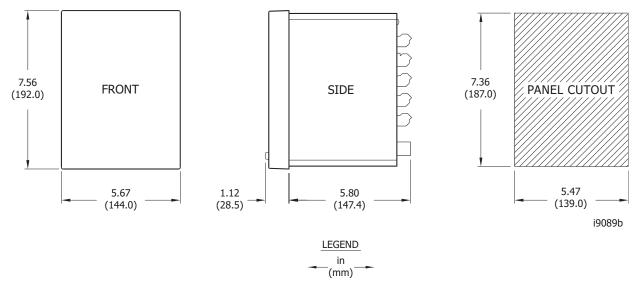


Figure 29 SEL-710-5 Dimensions for Rack- and Panel-Mount Models

Hardware Overview

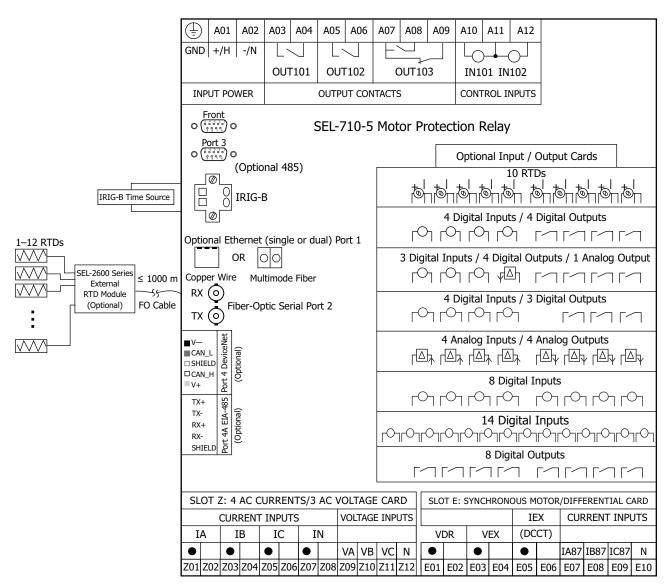
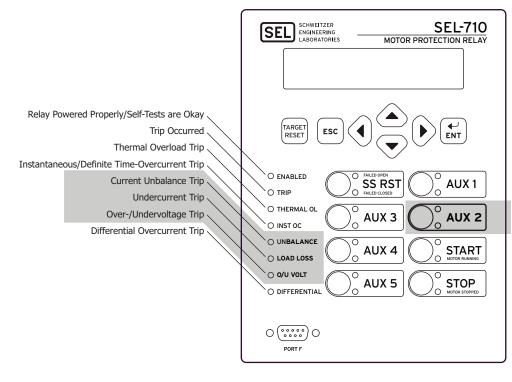
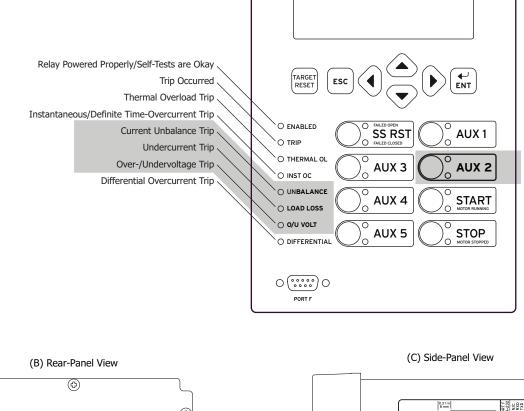




Figure 30 Hardware Overview for Synchronous Motor/Differential Card In Slot E

Relay Panel Diagrams

Induction Motor Protection Relay

(A) Front Panel With Default Configuration Labels

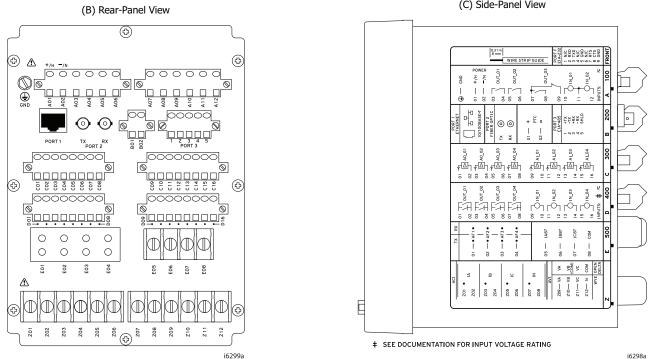
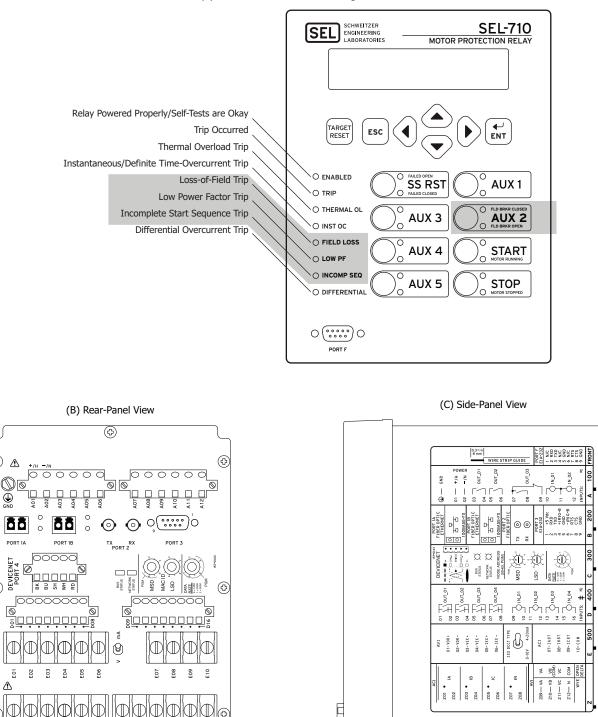



Figure 31 Single Copper Ethernet, Fiber-Optic Serial, EIA-485 Communications, PTC, 4 AI/4 AO, Fast Hybrid 4 DI/ 4 DO, and 4 Arc Flash/Differential Option (MOT: 071050E1A6XCA74851300)

Synchronous Motor Protection Relay

(A) Front Panel With Default Configuration Labels

Figure 32 Dual Fiber-Optic Ethernet, Fiber-Optic Serial, DeviceNet, Fast Hybrid 4 DI/4 DO, and Synchronous Motor/ Differential Option (MOT: 071050E1AA3CA75850830)

‡ SEE DOCUMENTATION FOR INPUT VOLTAGE RATING

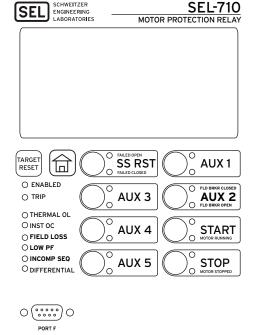
205 Z07 Z08 z10 z11 z12 z12

i6297a

Ð

(

æ


Z02 Z03 Z04 Z05

Z01

i6296a

SELU-710 LABORATORIES MOTOR PROTECTION RELAY
TARGET RESET OF SS RST VALED CLOSED OC AUX 1
O ENABLED O TRIP
O THERMAL OL O INST OC O FIELD LOSS
O LOW PF O INCOMP SEQ O DIFFERENTIAL

Synchronous Motor Protection Relay with Touchscreen

(A) Front Panel with Default Configuration Labels

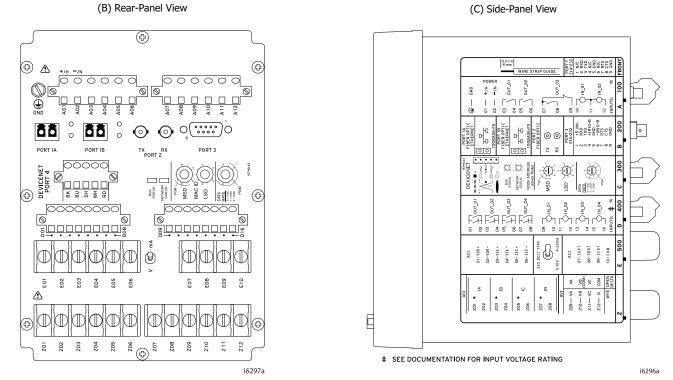


Figure 33 Color Touchscreen Display, Dual Fiber-Optic Ethernet, Fiber-Optic Serial, DeviceNet, Fast Hybrid 4 DI/4 DO, and Synchronous Motor/Differential Option (MOT: 071050E1AA3CA7585A830)

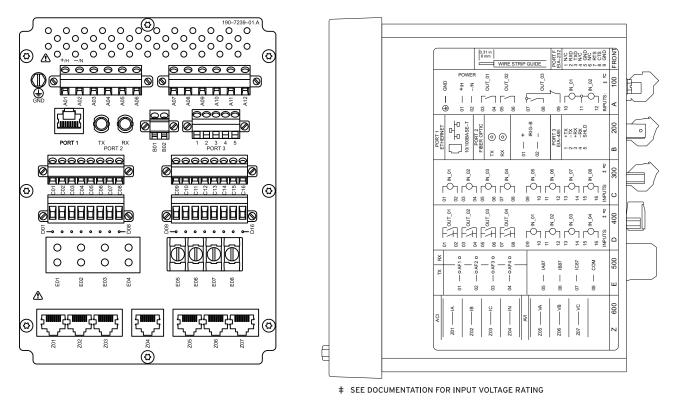
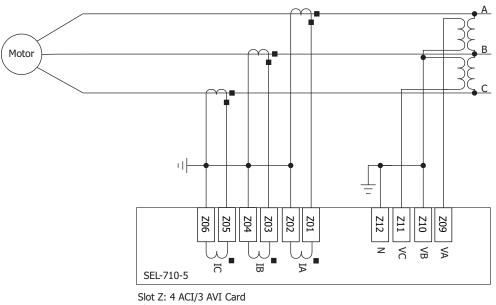
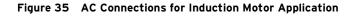




Figure 34 Copper Ethernet, Fiber-Optic Serial, EIA-485 Serial Communications, IRIG-B, 8 DI, Fast Hybrid 4 DI/4 DO, 4 Arc-Flash/Differential Option (Relay MOT: 071050E1A3ACA74L10300)

Applications

Slot E: Empty

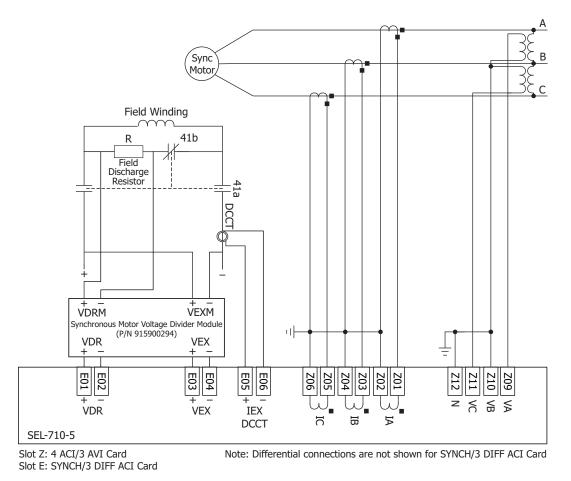
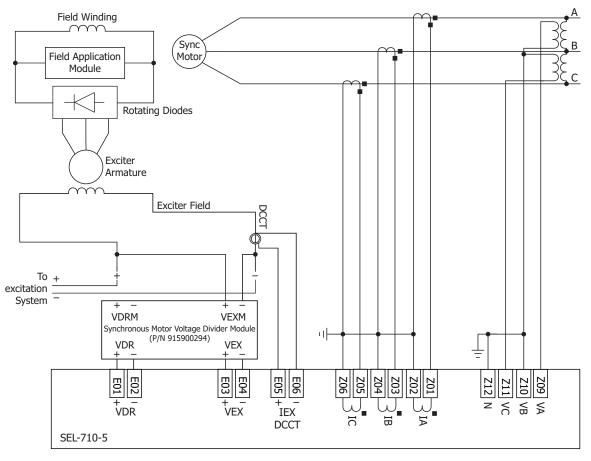



Figure 36 Typical AC/DC Connection Diagram for a Brush-Type Synchronous Motor Application

Slot Z: 4 ACI/3 AVI Card Slot E: SYNCH/3 DIFF ACI Card Note: Differential connections are not shown for SYNCH/3 Diff ACI Card

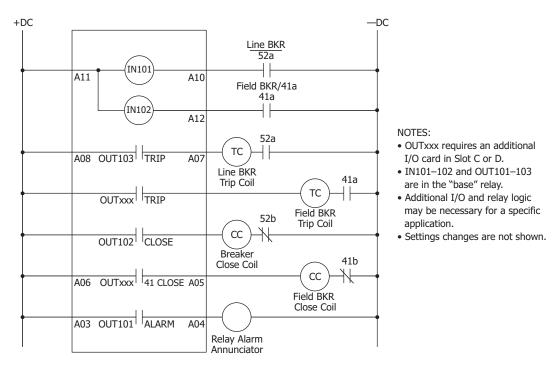


Figure 38 Typical DC Control Connection Diagram (Shown for the Synchronous Motor Application)

Specifications

Compliance

- Designed and manufactured under an ISO 9001 certified quality management system
- 47 CFR 15B. Class A

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

CE Mark in accordance with the requirements of the European Union

RCM Mark in accordance with the requirements of Australia

UKCA Mark in accordance with the requirements of United Kingdom

Normal Locations

UL Listed to U.S. and Canadian safety standards (File E212775, NRGU, NRGU7)

Note: UL has not yet developed requirements for products intended to detect and mitigate an arc flash; consequently, UL has not evaluated the performance of this feature. While UL is developing these requirements, it will place no restriction on the use of this product for arc-flash detection and mitigation. For test results performed by an independent laboratory and other information on the performance and verification of this feature, please contact SEL customer service.

Hazardous Locations

UL Certified for Hazardous Locations to U.S. and Canadian standards CL I, DIV 2; GP A, B, C, D; T3C, maximum surrounding temperature of 50°C (File E470448)

EU

EN 60079-0:2012 + A11:2013, EN 60079-7:2015, EN 60079-15:2010, EN 60079-11:2012

Ambient air temperature shall not exceed $-20^{\circ}C \le Ta \le +50^{\circ}C$.

Note: Where so marked, ATEX and UL Hazardous Locations Certification tests are applicable to rated supply specifications only and do not apply to the absolute operating ranges, continuous thermal, or short circuit duration specifications

General

AC Current Inputs (IA, IB, IC, IN)

 I_{NOM} = 1 A, 5 A, or 2.5 mA secondary depending on the model Π

Measurement Category:

Phase Currents

$I_{NOM} = 5 A$

Continuous Rating:	3 • I _{NOM} @ 85°C 4 • I _{NOM} @ 55°C
A/D Measurement Limit:	217 A peak (154 A
Saturation Current Rating:	Linear to 96 A syr
1-Second Thermal:	500 A
Burden (per phase):	<0.1 VA @ 5 A
I _{NOM} = 1 A	
Continuous Rating:	3 • I _{NOM} @ 85°C

A/D Measurement Limit: Saturation Current Rating: 1-Second Thermal: Burden (per phase):

M @ 55°C beak (154 A rms) symmetrical to 96 A symmetrical A @ 5 A 3 • I_{NOM} @ 85°C 4 • I_{NOM} @ 55°C 43 A peak (31 A rms) symmetrical Linear to 19.2 A symmetrical 100 A <0.01 VA @ 1 A

Neutral Currents

$I_{NOM} = 5 A$

Continuous Rating:
A/D Measurement Limit:
Saturation Current Rating:
1-Second Thermal:
Burden (per phase):
I _{NOM} = 1 A
Continuous Rating:

A/D Measurement Limit: Saturation Current Rating: 1-Second Thermal:

Burden (per phase):

I_{NOM} = 2.5 mA Continuous Rating:

A/D Measurement Limit:

Saturation Current Rating: Linear to 12.5 mA symmetrical 1-Second Thermal: 100 A Burden (per phase): <0.1 mVA @ 2.5 mA

3 • I_{NOM} @ 85°C

4 • I_{NOM} @ 55°C

<0.1 VA @ 5 A

3 • I_{NOM} @ 85°C

4 • I_{NOM} @ 55°C

<0.01 VA @ 1 A

3 • I_{NOM} @ 85°C

4 • I_{NOM} @ 55°C

symmetrical

500 A

100 A

32 A peak (22.6 A rms) symmetrical

6.4 A peak (4.5 A rms) symmetrical

Linear to 2.2 A symmetrical

40.9 mA peak (28.9 mA rms)

Linear to 11 A symmetrical

Differential Currents (IA87, IB87, IC87)

I _{NOM} = 1 A/5 A Universal	
Continuous Rating:	15 A
Saturation Current Rating:	Linear to 8 A symmetrical
1-Second Thermal:	500 A
Burden (per phase):	<0.01 VA @ 5 A

Rogowski Coil-Based AC Current Input-Phase and Neutral Current

Continuous Rating:	30 Vrms	
Nominal Input Voltage:	65 mV to 4.16 Vrms	
Number of Gain Ranges:	6	
Full Scale Voltage:	4, 8, 16, 32, 64, 128 Vrms	
A/D Measurement Limit:	±185 Vpeak @ 60 Hz	
10-Second Thermal:	200 Vac	
Input Impedance:	2 MΩ 50 pF	
Standard Compliance:	IEC 61869-6 IEC 61869-13	

Low-Power Current Transformer (LPCT) Inputs-Phase and Neutral Current

```
4 Vrms
Continuous Rating:
Nominal Input Voltage:
                            16 mV to 260 mVrms
Number of Gain Ranges:
                            4
Full Scale Voltage:
                            1, 2, 4, 8 Vrms
A/D Measurement Limit:
                            ±11.3 Vpeak
10-Second Thermal:
                            200 Vac
                            2 MΩ||50 pF
Input Impedance:
Standard Compliance:
                            IEC 61869-6
                            IEC 61869-13
```

AC Voltage Inputs (VA, VB, VC)

V _{NOM} (L-L)/PT Ratio Range:	100–250 V (if DELTA_Y := DELTA) 100–440 V (if DELTA_Y := WYE)
Rated Continuous Voltage:	300 Vac
10-Second Thermal:	600 Vac
Burden:	<0.1 W
Input Impedance:	$\begin{array}{l} 4 \ M\Omega \ differential \ (phase-to-phase) \\ 2 \ M\Omega \ common \ mode \ (phase-to-chassis) \end{array}$

Low-Energy Analog Voltage Sensor Inputs (RJ45 Input)

Continuous Rating	8 Vrms
Nominal Input Voltage:	0.5-6.8 Vrms
Full-Scale Voltage:	8 Vrms
A/D Measurement Limit:	±12 Vpeak
10-Second Thermal:	200 Vac
Input Impedance:	2 MΩ 50 pF
Standard Compliance:	IEC 61869-6 IEC 61869-13

Synchronous Motor Inputs

Inputs for Synchronous Motor Voltage Divider Module (SEL P/N 915900294)		
Field Discharge Voltage VDR (Motor Side, VDRM+ to VDRM–)		
Rated Operating Voltage:	As high as 955 Vrms	
Maximum Continuous Voltage–Thermal Limit:	1145 Vrms	
10-Second Thermal:	1555 Vrms	
Burden:	<0.1 VA	
Input Impedance:	5 MΩ differential	
VDR Divider Ratio:	5.4:1	
Field Excitation Voltage VEX	(Motor Side, VEXM+ to VEXM-)	
Rated Operating Voltage:	0–350 Vdc	
Maximum Continuous Voltage–Thermal Limit:	700 Vdc	
10-Second Thermal:	1000 Vdc	
Burden:	<0.1 W	
Input Impedance:	2 MΩ differential	
VEX Divider Ratio	2.1:1	
Field Excitation Current IEX		
Rated Operating Range:	0.5–2000 Adc	
DC Transducer:	4-20 mA or 0-10 V nominal output	
Input Impedance:	200 ohms (current mode) >10 kΩ (voltage mode)	
Power Supply		
Relay Start-up Time	Approximately 5–10 seconds (after power is applied until ENABLED LED turns on)	
High-Voltage Supply		
Rated Supply Voltage:	110–240 Vac, 50/60 Hz; 110–250 Vdc	
Input Voltage Range: (Operating Range)	85–264 Vac; 85–300 Vdc	
Power Consumption:	<50 VA (ac) <25 W (dc)	
Interruptions:	50 ms @ 125 Vac/Vdc 100 ms @ 250 Vac/Vdc	

Low-Voltage Supply 24-48 Vdc Rated Supply Voltage: Input Voltage Range (Operating Range): 19.2-60 Vdc Power Consumption: <25 W (dc) 10 ms @ 24 Vdc Interruptions: 50 ms @ 48 Vdc Fuse Ratings LV Power Supply Fuse 3.15 A Rating: 300 Vdc, 250 Vac Maximum Rated Voltage: Breaking Capacity: 1500 A at 250 Vac Type: Time-lag T HV Power Supply Fuse Rating: 3.15 A Maximum Rated Voltage: 300 Vdc, 250 Vac Breaking Capacity: 1500 A at 250 Vac Type: Time-lag T **Output Contacts** The relay supports Form A, B, and C outputs. Dielectric Test Voltages: 2500 Vac Impulse Withstand Voltage 5000 V (U_{IMP}) : Mechanical Durability: 100,000 no load operations Standard Contacts Pickup/Dropout Time: ≤8 ms (coil energization to contact closure) DC Output Ratings Rated Operational Voltage: 250 Vdc Rated Voltage Range: 19.2-275 Vdc Rated Insulation Voltage: 300 Vdc Make: 30 A @ 250 Vdc per IEEE C37.90 6 A @ 70°C Continuous Carry: 4 A @ 85°C Thermal: 50 A for 1 s Contact Protection: 360 Vdc, 115 J MOV protection across open contacts Breaking Capacity (10,000 Operations) per IEC 60255-0-20:1974: 24 Vdc 0.75 A L/R = 40 ms48 Vdc 0.50 A L/R = 40 ms125 Vdc 0.30 A L/R = 40 ms250 Vdc 0.20 A L/R = 40 msCyclic (2.5 Cycles/Second) per IEC 60255-0-20:1974: 24 Vdc 0.75 A L/R = 40 ms48 Vdc 0.50 A L/R = 40 ms125 Vdc 0.30 A L/R = 40 ms250 Vdc 0.20 A L/R = 40 msAC Output Ratings Maximum Operational 240 Vac Voltage (Ue) Rating: Insulation Voltage (Ui) Rating

300 Vac

50 A for 1 s

(excluding EN 61010-1):

Thermal:

Contact Rating Designation: B300

B300 (5 A Thermal Current, 300 Vac Max)			
	Maximum	Max VA	
Voltage	120 Vac	240 Vac	—
Make	30 A	15 A	3600
Break	3 A	1.5 A	360
PF <0.35, 50–60 Hz			

Utilization Category:

AC-15

AC-15			
Operational Voltage (Ue)	120 Vac	240 Vac	
Operational Current (Ie)	3 A	1.5 A	
Make Current	30 A	15 A	
Break Current	3 A	1.5 A	
Electromagnetic loads >72 VA, PF <0.3, 50-60 Hz			

Voltage Protection Across Open Contacts:

270 Vac, 115 J

Fast Hybrid Output Contacts

(High-Speed, High-Current Interrupting)

DC Output Ratings

Rated Operational Voltage:	250 Vdc
Rated Voltage Range:	19.2–275 Vdc
Rated Insulation Voltage:	300 Vdc
Make:	30 A @ 250 Vdc per IEEE C37.90
Continuous Carry:	6 A @ 70°C 4 A @ 85°C
1 D .:	50.4
1 s Rating:	50 A
Open State Leakage Current:	
8	
Open State Leakage Current: MOV Protection (maximum	<500 µA
Open State Leakage Current: MOV Protection (maximum voltage):	<500 μA 250 Vac/330 Vdc

Break Capacity (10,000 Operations) per IEC 60255-0-20:1974:

48 Vdc	10.0 A	L/R = 40 ms
125 Vdc	10.0 A	L/R = 40 ms
250 Vdc	10.0 A	L/R = 20 ms

Cyclic Capacity (4 Cycles in 1 Second, Followed by 2 Minutes Idle for Thermal Dissipation) per IEC 60255-0-20:1974:

10.0 A	L/R = 40 ms
10.0 A	L/R = 40 ms
10.0 A	L/R = 20 ms
	10.0 A

AC Output Ratings

See AC Output Ratings for Standard Contacts.

Optoisolated Control Inputs

250 V:	On for 200–312.5 Vdc Off below 150 Vdc
220 V:	On for 176–275 Vdc Off below 132 Vdc
125 V:	On for 100–156.2 Vdc Off below 75 Vdc
110 V:	On for 88–137.5 Vdc Off below 66 Vdc
48 V:	On for 38.4–60 Vdc Off below 28.8 Vdc
24 V:	On for 19.2–30 Vdc Off below 5 Vdc

When Used With AC Control Signals 250 V: On for 170.6-312.5 Vac Off below 106 Vac 220 V: On for 150.2-275 Vac Off below 93.3 Vac 125 V: On for 85-156.2 Vac Off below 53 Vac 110 V: On for 75.1-137.5 Vac Off below 46.6 Vac 48 V: On for 32.8-60 Vac Off below 20.3 Vac 24 V: On for 18-30 Vac Off below 5 Vac Current draw at nominal dc 2 mA (at 220-250 V) 4 mA (at 48–125 V) voltage: 10 mA (at 24 V) Rated Impulse Withstand Voltage (U_{imp}): 4000 V Maximum Pickup Time: Approx. 1 cycle Maximum Dropout Time: Approx. 2 cycles Analog Output (Optional) 1 A0 4 A0 Current: 4-20 mA $\pm 20 \text{ mA}$ Voltage: ±10 V Load at 1 mA: 0-15 kΩ Load at 20 mA: 0-300 Ω 0-750 Ω Load at 10 V: $>2000 \Omega$ Refresh Rate: 25 ms 25 ms % Error, Full Scale, at 25°C: <±1% <±0.55% Select From: Analog quantities available in the relay Analog Inputs (Optional) Maximum Input Range: ±20 mA ±10 V Operational range set by user 200Ω (current mode) Input Impedance: >10 k Ω (voltage mode) Accuracy at 25°C: With user calibration: 0.05% of full scale (current mode) 0.025% of full scale (voltage mode) Without user calibration: Better than 0.5% of full scale at 25°C Accuracy Variation With ±0.015% per °C of full-scale Temperature: (±20 mA or ±10 V) Frequency and Phase Rotation System Frequency: 50, 60 Hz Phase Rotation: ABC, ACB Frequency Tracking: 10-70 Hz Frequency Operating Range: 15-70 Hz Time-Code Input Format: Demodulated IRIG-B On (1) State: $V_{ih} \ge 2.2 V$ Off (0) State: $V_{il} \le 0.8 V$ $2 k\Omega$ Input Impedance: Synchronization Accuracy Internal Clock: ±1 μs

2 minutes per year, typically

±5 ms

All Reports:

SNTP Accuracy:

Unsynchronized Clock Drift Relay Powered:

PTP Accuracy:

Communications Ports

ooninnunications i orts			
Standard EIA-232 (2 Ports)		Minimum Receive	20.22 15
Location:	Front Panel	Sensitivity:	-29.23 dB
	Rear Panel	Link Budget:	17.23 dB
Data Speed: EIA-485 Port (Optional)	300–38400 bps	Clear-Jacketed Fiber Worst Case Loss:	-0.19 dBm
Location:	Rear Panel	Clear-Jacketed Fiber Typical Loss:	-0.17 dBm
Data Speed:	300-19200 bps	ST or V-Pin Connector Splice	
Ethernet Port (Optional)		Loss:	-2.00 dB
Single/Dual 10/100BASE- Single/Dual 100BASE-FX		Approximate Range: Optional Communications Ca	As much as 70 m
Standard Multimode Fiber-O			EIA-232 or EIA-485 communications
Location:	Rear Panel	Option 1:	card
Data Speed:	300–38400 bps	Option 2:	DeviceNet communications card
Fiber-Optic Ports Characteri	stics		(Note: This option has been discontinued and is no longer
Port 1 (or 1A, 1B) Ethernet			available as of September 25, 2017.)
Wavelength:	1300 nm	Communications Protocols	
Optical Connector Type:	LC	SEL, Modbus, DNP3, FTP, T	CP/IP, Telnet, SNTP, IEEE-1588-2008
Fiber Type:	Multimode	firmware-based PTP, IEC 6	1850 Edition 2, IEC 60870-5-103,
Link Budget:	16.1 dB	(RSTP), EtherNet/IP, MIRR	2.1Q-2014 Rapid Spanning Tree Protocol DRED BITS, and DeviceNet
Typical TX Power:	–15.7 dBm	Operating Temperature	
RX Min. Sensitivity:	-31.8 dBm	IEC Performance Rating:	-40° to +85°C (-40° to +185°F)
Fiber Size:	62.5/125 μm		(per IEC/EN 60068-2-1 and
Approximate Range:	~6.4 km		IEC/EN 60068-2-2)
Data Rate:	100 Mbps	Note: Not applicable to UL app Note: Front panel display is imp	
Typical Fiber Attenuation:	–2 dB/km	-20° C and above $+70^{\circ}$ C.	
Port 2 Serial		DeviceNet Communications Card Rating:	+60°C (+140°F) maximum
Wavelength:	820 nm	-	As many as 26 inputs are allowed in
Optical Connector Type:	ST		ambient temperatures of 85°C or less.
Fiber Type:	Multimode		As many as 34 inputs are allowed in ambient temperatures of 75°C or less.
Link Budget:	8 dB		As many as 44 inputs are allowed in
Typical TX Power:	-16 dBm		ambient temperatures of 65°C or less.
RX Min. Sensitivity:	-24 dBm	Operating Environment	
Fiber Size:	62.5/125 μm	Insulation Class:	Ι
Approximate Range:	~1 km	Pollution Degree:	2
Data Rate:	5 Mbps	Overvoltage Category:	П
Typical Fiber Attenuation:	-4 dB/km	Atmospheric Pressure:	80–110 kPa
Channels 1-8 Arc-Flash Dete		Relative Humidity:	5%–95%, noncondensing
Diagnostic Wavelength:	640 nm	Maximum Altitude Without Derating (Consult the	
Optical Connector Type:	V-Pin	Factory for Higher Altitude	
Fiber Type:	Multimode	Derating):	2000 m
Typical TX Power:	-12 dBm	Dimensions	
Point Sensor			nm (7.56 in) x 147.4 mm (5.80 in)
Minimum Receive Sensitivity:	-52.23 dB	Weight	
Point Sensor Diagnostic		2.7 kg (6.0 lb)	
Worst-Case Loss:	-28 dB	Relay Mounting Screw (#8–3	32) Tightening Torque
Link Budget:	12.23 dB	Minimum:	1.4 Nm (12 in-lb)
Black-Jacketed Fiber Worst-	0.10 dBm	Maximum:	1.7 Nm (15 in-lb)
Case Loss: Black Jacketed Fiber Typica	–0.19 dBm	Terminal Connections	
Black-Jacketed Fiber Typica Loss:	–0.17 dBm	Terminal Block Screw Size:	#6
ST or V-Pin Connector Splice	e	Ring Terminal Width:	0.310 inch maximum
Loss:	-2.00 dB	Terminal Block Tightening T	orque
Approximate Range:	As much as 35 m	Minimum:	0.9 Nm (8 in-lb)
		Maximum:	1.4 Nm (12 in-lb)

Fiber Sensor

Minimum:0.5 Nm (4 in M)Descenic (HiPoy):PE (2025: 37:2013, Section 10.0.3.1)Compression Plug Mounting Ear Screen Tightening TorqueMinimum:0.18 Nm (1.0 in M)1.0 Vue on analog outputs, thermat point, MICMinimum:0.15 Nm (2.2 in h)2.1 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Maximum:0.15 Nm (2.2 in h)2.1 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Product Standards:EEC (0255:26:20132.1 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)ElectomagneticEEC (0255:26:20131.0 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Compatibility:EEC (0255:26:20131.0 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Lipson Compatibility:EEC (0255:26:20131.0 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Lipson Compatibility:EEC (0255:26:2013)1.0 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Lipson Compatibility:EEC (0255:26:2013)1.0 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Lipson Compatibility:EEC (0255:26:2013)1.0 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Lipson Compatibility:EEC (0255:26:2013)1.0 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Lipson Compatibility:EEC (0255:27:2013)1.0 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Lipson Compatibility:EEC (0255:27:2013)1.0 NM (2.0 in M)2.1 NM (2.0 in M)2.1 NM (2.0 in M)Lipson Compatibility:EEC (0255:27:2013)1	Compression Plug Tightenii	ng Torque	Dielectric Strength and Impu	ılse Tests
InstantionLos Yue (as Intro) Compression Plug Mounting Ear Steven Tightening Torque Mainanan: 0.218 Nu (1.6 lie-lb) Maximan: 0.25 Nu (2.2 lie-lb)10 KYae on and/og ouppase, chemel part 20 KYae on and/og ouppase, chemel 20 KYae 20 KYae on and/og ouppase, chemel 20 KYae on and/og ouppase, chemel 20 KY	Minimum:	0.5 Nm (4.4 in-lb)		
Compression Plug Mourting Ear Strew Tightening Torque Minimum: 0.25 Nm (2.2 in th) RTD Compression Plug Tightening Torque Maximum: 0.25 Nm (2.2 in th) Product Standards Electromagnetic Standards Decromagnetic Standards Electromagnetic Standards Compatibility: EC 60255-62013 UL 508 Compatibility: EC 60255-62013 UL 508 Compatibility: EC 60255-2013 UL 508 Compatibility: EC 60255-2013 UL 508 Compatibility: EC 60255-2013 UL 508 Compatibility: EC 60255-2013 UL 508 Compatibility: EC 60255-2013 Electromagnetic Standards Electromagnetic Standar	Maximum:	1.0 Nm (8.8 in-lb)	IEEE C37.90-2005 1.0 kVac on analog output	
Maximum 0.25 Nm (2.2 mb) 2.0 KM2 on RDB (2 Maximum 0.25 Nm (2.2 mb) 2.0 KM2 on RDB (2 Product Standards 0.2 Sm (2.2 mb) 2.0 KM2 on RDB (2 Product Standards Econogenic EC 00255-2013 Compatibility: EC 00255-2013 No. C 2.2 No. 14-05 Type Tests Social Compatibility: Econogenic Environmental Tests Econogenic EC 0025-201 + CRDC (2003) Prof onclosed in the roley model on the	Compression Plug Mounting	g Ear Screw Tightening Torque		÷ .
Maximum: 0.25 Nm (2.2 in.b) 2.5 KVac mocount 100 PTO Compression Put Typbering Type Internation Portuge 365 KVac mocount 100 Product Standards 800 Koron 100 Encompany Difference 800 Koron 100 Encompany Difference 800 Koron 100 Decompany Difference 800 Koron 100 Encompany Difference 800 Koron 100 Difference 800 Koron 100 Encompany Difference 800 Koron 100 Difference 800 Koron 100 Encompany Difference 800 Koron 100 Difference 800 Koron 100 Encompany Difference 800 Koron 100	Minimum:	0.18 Nm (1.6 in-lb)		2.0 kVac on analog inputs, PTC
RTD Compression Plug Tightering Torque36.KVac on poet will semination of the	Maximum:	0.25 Nm (2.2 in-lb)		
Maximum: D20 Nu (22 ml) Product Standards Inputs Determagniting: IEC 60255 26:2013 Comparison IEC 60255 27:2013, Section 10.6.12 Type Tests Inputs Enclosure Protection: IEC 60259:2001 + CRD C0203 PP6 aclosed in panel (bachscreen mains) IEC 60259:2001 + CRD C0203 IP96 aclosed in panel (bachscreen mains) IEC 60259:2001 + CRD C0203 IP96 aclosed in panel (bachscreen mains) IEC 60259:2001 + CRD C0203 IP96 aclosed in panel (bachscreen mains) IEC 60259:2001 + CRD C0203 IP96 aclosed in panel (bachscreen mains) IEC 60259:2001 + CRD C0203 IP96 aclosed in panel (bachscreen mains) IEC 60259:2001 - C2.3 IP96 aclosed in panel (bachscreen mains) IEC 60259:2001 - C2.3 IP90 (ar terminals and he relay rear panel with optional terminal back cover IEC 60025 - 22:003 IP90 (ar terminals and he relay rear panel with optional terminal back cover IEC 60025 - 22:013 IP90 (ar terminals and he relay rear panel with optional terminal back cover IEC 60025 - 22:013 IP90 (ar terminals and he relay rear panel with optional terminal back cover IEC 60025 - 22:013 IP90 (ar terminals and he relay rear panel with optional terminal back cover IEC 60025 - 22:013 IP90 (ar terminals and he relay rear panel with optional terminal back cover IEC 60025 - 22:013 IEC 60025 - 2	RTD Compression Plug Tigh	ntening Torque		3.6 kVdc on power supply, ac current,
Product Standards Impub:: Incomparise Incomparise <td>Maximum:</td> <td>0.25 Nm (2.2 in-lb)</td> <td></td> <td></td>	Maximum:	0.25 Nm (2.2 in-lb)		
Let comparison Comparison LE 0025-27:2013 LE 0025-27:2013 CL 508 Type Tests Environmental Tests Environment	Product Standards		Impulse:	•
Comparing III: IEC 60255-22:013 (SA C23.2 No. 14.05 Support ests S	Electromagnetic	IEC 60255-26:2013	-	
UL. 5880.5.1, 15.9 to manalog outputs, PTC 0.5.1, 15.8 to		IEC 60255-27:2013		
IEEE COSS 3: 2001 + CRDG: 2003 Pr65 enclosed in parel (2-line display models)IEEE COSS 3: 2001 - CRDG: 2003 Section 7.2.3 EV CoSS 3: 2001 + CRDG: 2003 Pr65 enclosed in parel (2-line display models)IEEE COSS 3: 2001 - CRDG: 2003 Section 7.2.3 EV IEC 60052 5: 2013, Section 7.2.4 EV IEC 60052 5: 2013, Section 7.2.7 EV IVARIAN Resistance:IEC 60052 5: 2013, Section 7.2.4 EV IEC 60052 5: 2013, Section 7.2.7 EV IEC 60052 5: 2013, Section 10.6.2.1 EV IEC 60055 5: 2013, Section 10.6.2.2 EV IEC 60055 5: 2013, Section 10.6.2.1 EV IEC 60055 5: 2013, Section 10.6.1.1 EV IEC 60055 5: 2				
Uppe Tests Security Control (1998) Security Control (1998) <td></td> <td>CSA C22.2 No. 14-05</td> <td></td> <td></td>		CSA C22.2 No. 14-05		
First output the field of Sign 2001 + CRDG-2003 IP65 enclosed in panel (2-line display models)IFG 61000 + 2-2008 IFG 61000 + 2-2008 IFFG 61000 + 2-2008 IFG 61000 + 2-2008 IFG 61000 + 2-2008 IFG 61000 + 2-2008 IFFG 61000 + 2	• •			Severity Level: 0.5 J, 5 kV
Linclosure Protection: IEC 60052-02104 (CMD32003) BPG5 conclosed in panel (2-line display models) IEC 610004-2:2008 IEC 610004 (CMD32003) IEC 610004-2:2008 IEC 610004 (CMD32004) IEC 610004-2:2008 IEC 610004 (CMD32004) IEC 610004-2:2008 IEEC 610004 (CMD32004) IEEC 60255-20:2013, Section 7.2.4 IEEC 610004 (CMD32004) IEEC 60255-20:2013, Section 7.2.4 IEEC 610004 (CMD32004) IEEC 610004 (CMD32004) IEEC 610004 (CMD32004) IEEC 610004 (CMD304) IEEC 60005 (CMD32004)	Environmental Tests		RFL and Interference Tests	0.5 5, 550 V on analog outputs, 1 10
models)Electrostatic Discharge Immunity:Electrostatic Discharge Immunity:Electrostatic Discharge IEC 60025-220203. Section 7.2.3Bit discrostatic Discharge and discrosterion assembly (protection agains solid foreign objects oal) (SEL IN'S 915900170). (SEL IN'S 915900170). (SEC 00255-2111198 (SEC 00255-2111198 (SEC 00255-2111198). (SEC 00255-211110.06.2.1). (SEC 00255-2111198). (SEC 00255-211110.06.2.2). (SEC 00255-211119). (SEC 00255-2111198). (SEC 00255-211110.06.2.2). (SEC 00255-211110.06.2.2). (Enclosure Protection:			
P54 enclosed in panel (nuclescreen models)Inclusinge Immunity:Immunity:Immu			,	HEG (1000 4 0 0000
image: image:		·	6	
dust-protection assembly (protection (SEL PN 915900170). (SEL PN 915900170). (SEL PN 915900170). (SEL PN 915900170). (SEL PN 915900170). IP 10°C temperature derating applies to the temperature panelRadiated RF Immunity: IEC 60025-26:2013, Section 7.2.4 IU V/m IEEE 6:37.90.2-2004 20 V/mP10 for terminals and he relay rear panelIP 20 for terminals and he relay rear panel with optional terminal block coverFast Transient, Burst Immunity*. IEC 60002-4:2010 IEC 60025-26:2013, Section 7.2.5 IC 6002-4:2010Note: If the rear terminals are accessible by trained maticance or operativ prosted enclosure or restricted area accessible by trained maticance or operativ IEC 60025-27: 2013, Section 10.6.2.1 IEC 60255-27: 2013, Section 10.6.2.1 IEC 60255-27: 2013, Section 10.6.2.1 IEC 60255-27: 2013, Section 10.6.2.2 IEC 60255-27: 2013, Section 10.6.2.3 IEC 60255-27: 2013, Section 10.6.2.4 IEC 60255-27: 2013, Section 10.6.2.3 IEC 60255-27: 2013, Section 10.6.2.4 IEC 60255-27: 2013, Section 10.6.2.4 IEE 60255-27: 2013, Section 10.6.2.4 IEC 60255-27: 2013, Section 10.6.2.4 IEC 60255-27: 2013, Section 10.6.2.4 IEC 60255-27: 2013, Section 10.6.1.4 IEC 60255-27: 2013, Section 10.6.1.5 IEC 60255-27: 2013, Section 10.6.1.6 IEC 60255-27: 2013, Section		·		IEEE C37.90.3:2001
against solid foreign objects only) (SEL PN 91500170). The 107C temperature derating applies to the temperature specifications of the relay. IP10 for terminals and the relay rear panel IP20 for terminals and the relay rear panel with optional terminal block coverRadiated RF Immunity: EEE 627.90.2-2004 20 V/mIEC 61000-44.32101 IEC 60255.26.2013, Section 7.2.5 4.VV or 5.0 kHz for comma lock der 5.0 kHz for comma lock der 5.0 kHz for comma lock der 5.0 kHz for comma lock trained matices operative trained matices operative coverFast Transient, Burst IEC 60025-4.2013, Section 7.2.5 4.VV or 5.0 kHz for comm. portsNote: If the rear terminals are accessible during normal use, the product must be mounted in a locked enclosure or restricted area accessible by trained matices operative IEC 60255-21.21 1988Fast Transient, Burst IEC 60025-32.71.3 (Section 10.6.2.1 EC 60255-21.21 1988Note: If the rear terminals are derective must be mounted in a locked enclosure or restricted area accessible by trained matices operative IEC 60255-21.21 1988Surge Immunity ^{a,b} Shock Resistance:IEC 60255-21.21 1988Surge Withstand Capability IEC 60255-21.21 1988Sissmic (Quake Response):IEC 60255-21.31 Section 10.6.2.3 Withstand: Class 1 Response: Class 2Surge Withstand Capability IEC 60255-27.2013, Section 10.6.1.4 IEC				
The 10°C temperature applies to the temperature specifications of the relay. P10 for terminals and the relay rear panelRadiated KP Immunity: IEC 60255-26:2013, Section 7.2.4 U V/mIEC 61000-4-3:2010 IEE 62:30:02-2004 20 V/mNote: If the rear terminals are accessible during normal use, the product mushemace or operation ecossible during normal use, the product mushemace or operation personnel.Fast Transient, Burst IEC 60025-3:2013, Section 7.2.5 4 KV @ 5.0 kHz for comm. portsNote: If the rear terminals are accessible during normal use, the product mushemace or operation personnel.Fast Transient, Burst IEC 60025-3:2013, Section 7.2.5 4 KV @ 5.0 kHz for comm. portsVibration Resistance:IEC 60255-21:1:1988 IEC 60255-21:2:1988 IEC 60255-27:2013, Section 10.6.2.1 Endurance: Class 2 IEC 60255-27:2013, Section 10.6.2.2 IEC 60255-21:2:1988 IEC 60255-27:2013, Section 10.6.2.3 Withstand: Class 1 Response: Class 2Surge Withstand Capability IEC 60025-3:20:01 IEC 60255-27:2013, Section 10.6.2.3 Vibration 10.6.2.4 IEC 60255-27:2013, Section 10.6.2.4 IEC 60255-27:2013, Section 10.6.2.4 IEC 60255-27:2013, Section 10.6.1.4 IEC 60		against solid foreign objects only)		-
applies to the temperatureIEC 6025-26:2013, Section 7.2.4 2017P10 for terminals of the relay, panelIP20 for terminals and the relay rear panelIEE C 1000-4-4:2012 IEC 60255-20:2013, Section 7.2.5 4 KV @ 5.0 kHzNote: If the rear terminals are accessible during normal use, the product muse the moutoff in a locked conclosure or restricted area accessible by trained maitenance or operation personnel.Fast Transient, Burst Immunity ⁴ :IEC 60255-20:2013, Section 7.2.5 4 KV @ 5.0 kHzVibration Resistance:IEC 60255-21:11988 IEC 60255-21:2013, Section 10.6.2.1 Endurance: Class 2Surge Immunity ^{4,2,4} IEC 6025-26:2013, Section 7.2.7 2.1 KV ine-to-line 4 KV line-to-lineShock Resistance:IEC 60255-21:2013, Section 10.6.2.2 IEC 60255-21:2013, Section 10.6.2.3 Withstand: Class 1 Burger, Class 2Surge Withstand Capability IEC 6025-22:2013, Section 7.2.6 2.5 KV common mode on comm. ports IEC 60255-27:2013, Section 10.6.2.4 IEC 60255-27:2013, Section 10.6.2.4 IEC 60255-27:2013, Section 10.6.2.4 IEC 60255-27:2013, Section 10.6.1.4 -40°C (16 hoursSurge Withstand Capability IEC 60025-27:2013, Section 10.6.1.4 -40°C (16 hoursDry Heat:IEC 60066-2-1:2007 IEC 60025-27:2013, Section 10.6.1.4 -40°C (16 hoursIEC 60066-2-1:2007 IEC 60025-27:2013, Section 10.6.1.5 -40°C (16 hoursDamp Heat, Cyclic:IEC 60066-2-1:2007 IEC 60025-27:2013, Section 10.6.1.5 -40°C (16 hoursIEC 60066-2-2:2001 IEC 60025-27:2013, Section 10.6.1.5 -40°C (16 hoursDamp Heat, Cyclic:IEC 60066-2-1:2007 IEC 60025-27:2013, Section 10.6.1.5 -40°C (16 hoursIEC 60066-2-1:2007 IEC 60025-27:2013, Section 10.6.1.5 -40°C (16 hoursDamp				IEC 61000-4-3:2010
IEEE C37.90.2-2004 20 VinIEE C37.90.2-2004 20 VinIEE C37.90.2-2004 20 VinNote: If the reat terminals and the relay rear panel with optional terminal block coverNote: If the reat terminals are accessible during normal use, the product must be mounted in a locked enclosure or restricted area accessible by trained matienance or operations personnel.Vibration Resistance:IEC 60255-21:013, Section 10.6.2.1 Endurance: Class 2 IEC 60255-21:2:1988 IEC 60255-21:2:1988 IEC 60255-21:2:1988 IEC 60255-2:1:2:1988 IEC 60255-2:1:2:1988 IEC 60255-2:1:2:1988 IEC 60255-2:1:2:1988 IEC 60255-2:1:2:1988 IEC 60255-2:1:2:1988 IEC 60255-2:1:2:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1		applies to the temperature		
panel20 V/mP20 for terminals and the relay rear panel with optional terminal block coverFast Transient, Burst Immunity ⁴ :IEC 61000-44:2012 IEC 60255-26:2013, Section 7.2.5 4 KV @ 5.0 kHz 2 KV Ime-to-line 4 KV Ime-to-line 4 KV Ime-to-earth LEA ports compliant with IEC 61025-12: 1988 IEC 60255-27: 2013, Section 10.6.2.2 IEC 60255-27: 2013, Section 10.6.2.3 Withstand Class 1 Response: Class 2 IEC 60255-27: 2013, Section 10.6.2.4 IEC 60255-27: 2013, Section 10.6.2.4 IEC 60255-27: 2013, Section 10.6.2.4 IEC 60255-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.4 HZ HOW HZ IEC 60255-27: 2013, Section 10.6.1.4 IEC 60255-27: 2013, Sectio		· ·		
Note:Instantial block coverImmunityabIEC 60255-26:2013, Section 7.2.5 4 V @ 5.0 kHz 2 kV @ 5.0 kHz 1000-4.5:2005Vibration Resistance:IEC 60255-27:1:11988 IEC 60255-27:2013, Section 10.6.2.1 Endurance: Class 2Surge Immunityab:IEC 6025-26:2013, Section 7.2.7 2 kV line-to-line 4 k		-		20 V/m
Note:If the rear terminals are accessible during normal use, the product must he mounted in a locked enclosure or restricted area accessible by trained mainenace or operation personnel.Surge Immunity ^{a,b} :4 kV @ 5.0 kHz 2 kV @ 5.0 kHz for comm. ports IEC 60255-26:2013, Section 7.2.7 2 kV line-to-line 4 kV line-to-earth IEC 60255-27:2013, Section 10.6.2.1 Endurance: Class 2Surge Immunity ^{a,b} :EC 61000-4-5:2005 IEC 60255-26:2013, Section 7.2.7 2 kV line-to-earth IEC 60255-27:2013, Section 10.6.2.2 IEC 60255-27:2013, Section 10.6.2.2 IEC 60255-27:2013, Section 10.6.2.2 IEC 60255-27:2013, Section 10.6.2.4 Response: Class 2Surge Withstand Capability IEC 60255-27:2013, Section 7.2.6 2.5 kV occillatorySeismic (Quake Response):IEC 60255-27:2013, Section 10.6.2.4 Response: Class 2Surge Withstand Capability IEC 60255-27:2013, Section 7.2.6 2.5 kV occillatoryCold:IEC 60255-27:2013, Section 10.6.1.4 -40°C, 16 hoursIEC 60255-27:2013, Section 10.6.1.4 1kV differential mode 1kV common mode on comm. portsDamp Heat, Steady State:IEC 60068-2-1:2007 IEC 60255-27:2013, Section 10.6.1.5 40°C, 93% relative humidity, 10 daysMagnetic Field Immunity:Damp Heat, Cyclic:IEC 60068-2-7:2013, Section 10.6.1.5 40°C, 93% relative humidity, 10 daysNagnetic Field Immunity:Damp Heat, Cyclic:IEC 60068-2-7:2013, Section 10.6.1.5 40°C, 93% relative humidity, 10 daysPower Supply Immunity:Damp Heat, Cyclic:IEC 60068-2-7:2013, Section 10.6.1.5 40°C, 93% relative humidity, 10 daysPower Supply Immunity:Damp Heat, Steady State:IEC 60068-2-7:2013, Section 10.6.1.5 40°C, 93% relative humidity, 10 daysPower Supply Immunity:				
Note: If the rear terminals are accessible during normal use, the product must be mounted in a locked enclosure or restricted area accessible by trained maineance or operation personnel.2 kV @ 5.0 kHz for comm. portsVibration Resistance:IEC 60255-21-1: 1988 IEC 60255-27: 2013, Section 10.6.2.1 Endurance: Class 2IEC 60255-25-26:2013, Section 7.2.7 2 kV line-to-line 4 kV line-to-earth IEC 60255-27: 2013, Section 10.6.2.2 IEC 60255-27: 2013, Section 10.6.2.3 Withstand: Class 1IEC 60255-27: 2013, Section 10.6.2.3 IEC 60255-27: 2013, Section 10.6.2.3 Withstand: Class 1Surge Withstand Capability IEC 60255-25-26:2013, Section 7.2.6 2.5 kV common mode 1 kV differential mode 1 kV common mode on comm. ports 1 kV differential mode 1 kV common mode on comm. ports 1 kV differential mode 1 kV common mode 1 kV differential mode 1 kV common mode 2.5 kV common mode 1 kV differential mode 1 kV differential 1 kV differential <br< td=""><td></td><td></td><td>Immunity":</td><td></td></br<>			Immunity":	
must be mounted in a locked enclosure or restricted area accessible by trained maitenance or operation personnel.Surge Immunity ^{ab} :IEC 61000-4-5:2005 IEC 60255-27:2013, Section 10.6.2.1 EC 60255-27:2013, Section 10.6.2.1 Endurance: Class 2Vibration Resistance:IEC 60255-27: 2013, Section 10.6.2.1 Endurance: Class 2Surge Immunity ^{ab} :IEC 61000-4-18:2010Shock Resistance:IEC 60255-27: 2013, Section 10.6.2.2 IEC 60255-27: 2013, Section 10.6.2.3 Withstand: Class 1 Response: Class 2Surge Withstand Capability Immunity ^{ab} :IEC 61000-4-18:2010Seismic (Quake Response):IEC 60255-27: 2013, Section 10.6.2.4 Response: Class 2 Bump: Class 1Surge Withstand Capability Immunity ^{ab} :IEC 61000-4-18:2010Seismic (Quake Response):IEC 60025-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.4 -40°C, 16 hoursConducted RF ImmunityIEC 61000-4-6:2008 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.5 -40°C, 16 hoursMagnetic Field ImmunityIEC 61000-4-9:200 Severity Level: 1000 A/m for 1 minute; 50/60 Hz IEC 60025-27: 2013, Section 10.6.1.6 -25°-55°C, 6 cycles, 95% relative humidityPower Supply ImmunityDamp Heat, Cyclic:IEC 60068-2-14: 2009 IEC 600255-27: 2013, Section 10.6.1.6 -25°-55°C, 6 cycles, 95% relative humidityPower Supply ImmunityDamp Heat, Cyclic:IEC 60068-2-14: 2009 IEC 600255-27: 2013, Section 10.6.1.6 -25°-55°C, 6 cycles, 95% relative humidity	Note: If the rear terminals are			2 kV @ 5.0 kHz for comm. ports
Vibration Resistance:IEC 60255-21-1: 1988 IEC 60255-27: 2013, Section 10.6.2.1 Endurance: Class 22 kV line-to-line 4 kV line-to-carth LEA ports compliant with IEC 61869-13 tested to 1 kV, 1 MHz line-to-earth onlyShock Resistance:IEC 60255-21: 2018 IEC 60255-27: 2013, Section 10.6.2.3 Withstand: Class 1 Response: Class 2Surge Withstand Capability IEC 60255-26: 2013, Section 7.2.6 EC 60255-27: 2013, Section 10.6.2.3 Withstand: Class 1 Bump: Class 1Surge Withstand Capability IEC 60255-27: 2013, Section 10.6.2.3 Withstand: Class 1 Response: Class 2EC 6025-26: 2013, Section 7.2.6 EC 60255-27: 2013, Section 10.6.2.3 Withstand: Class 1 IEC 60255-27: 2013, Section 10.6.2.4 Response: Class 2Surge Withstand Capability IEC 60255-27: 2013, Section 10.6.2.4 W common mode on comm. ports IEE 60255-27: 2013, Section 10.6.1.4 -40°C, 16 hoursEC 6025-27: 2013, Section 7.2.8 IEC 60255-27: 2013, Section 10.6.1.4 -40°C, 16 hoursConducted RF Immunity:IEC 61000-4.6:2008 IEC 60255-27: 2013, Section 10.6.1.4 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.3 Sector 10.6.1.3 Sector 10.6.1.3 Sector 10.6.1.5 HCC 008-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.5 HCC 008-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.5 HCC 008-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.6 HCC 60255-27: 2013, Section 10.6.1.6 HCC 0255-27: 2013, Section 10.6.1.5 HCC 0255-27: 2013, Section 10.6.1.6 HCC 0255-27: 2013, Section 10.6.1.6<	must be mounted in a locked enclosure or restricted area accessible by		Surge Immunity ^{a,b} :	
HEC 60255-27: 2013, Section 10.6.2.1 Endurance: Class 2Lec 4kV line-to-earth LEC 60255-21: 2013, Section 10.6.2.2 line to-earth onlyShock Resistance:IEC 60255-21-2: 1988 IEC 60255-27: 2013, Section 10.6.2.2 IEC 60255-27: 2013, Section 10.6.2.2 IEC 60255-27: 2013, Section 10.6.2.3 Withstand: Class 1 Response: Class 2Surge Withstand Capability IEC 61000-4-18:2010 IEC 60255-26:2013, Section 7.2.6 2.5 kV common mode on comm. ports IEEE 637.90.1-2002 2.5 kV common mode on comm. ports IEEE 637.90.1-2002 1EC 60255-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.4 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.5 IEC 60255-27: 2013, Section 10.6.1.5 IEC 60255-27: 2013, Section 10.6.1.6 IEC 60255-27:		-		
Endurance: Class 2 Response: Class 2ELEX points computant with IEC 6180-13 tested to 1 kV, 1 MHz line-to-earth onlyShock Resistance:IEC 60255-21: 2013, Section 10.6.2.2 IEC 60255-27: 2013, Section 10.6.2.3 withstand: Class 1 Response: Class 2 Bump: Class 1Surge Withstand Capability Immunity ⁴ :IEC 6100-4-18:2010 IEC 60255-27: 2013, Section 10.6.2.3 V common mode 1 kV common mode 1 kV common mode 1 kV common mode 1 kV common mode 0 common mode 1 kV common mode	Vibration Resistance:			LEA ports compliant with
Kesponse: Class 2line-to-earth onlyShock Resistance:IEC 60255-21: 2: 1988Surge Withstand CapabilityIEC 61000-4.18: 2010IEC 60255-27: 2013, Section 10.6.2.3 Withstand: Class 1Withstand: Class 1IEC 60255-26: 2013, Section 7.2.6Seismic (Quake Response):IEC 60255-27: 2013, Section 10.6.2.4 Response: Class 2Normon mode on comm. portsSeismic (Quake Response):IEC 60255-27: 2013, Section 10.6.2.4 Response: Class 2Conducted RF Immunity:IEC 61000-4.6: 2008 IEC 60255-26: 2013, Section 7.2.8 10 VrmsCold:IEC 60068-2.1: 2007 IEC 60255-27: 2013, Section 10.6.1.4 -40°C, 16 hoursConducted RF Immunity:IEC 61000-4.6: 2008 IEC 60255-26: 2013, Section 7.2.8 10 VrmsDry Heat:IEC 60068-2.2: 2007 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.3 severity Level:Magnetic Field Immunity:IEC 61000-4.8: 2009 IEC 60225-26: 2013, Section 7.2.10 Severity Level:Damp Heat, Steady State:IEC 60068-2-3: 2007 IEC 60025-27: 2013, Section 10.6.1.3 severity Level:I000 A/m for 1 seconds IEC 61000-4-11: 2004 Severity Level:Damp Heat, Cyclic:IEC 60068-2-3: 2007 IEC 60025-27: 2013, Section 10.6.1.5 40°C, 93% relative humidity, 10 daysPower Supply Immunity:Damp Heat, Cyclic:IEC 60068-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.6 Severity Level:IO0 A/m IEC 61000-4-11: 2004 IEC 61000-4-17: 1999 IEC 61000-4-17: 1999 IEC 61000-4-17: 1999 IEC 61000-4-17: 1999 IEC 61000-4-17: 1099 IEC 61000-4-17: 10				
IEC 60255-27: 2013, Section 10.6.2.2 Immunity ³ : IEC 60255-26: 2013 Section 7.2.6 Immunity ³ : Immunity ³ : IEC 60255-26: 2013 Section 7.2.6 Seismic (Quake Response): IEC 60255-27: 2013, Section 10.6.2.4 IKV common mode 1 kV differential mode Seismic (Quake Response): IEC 60255-21: 2013, Section 10.6.2.4 Z.5 kV common mode on comm. ports Bump: Class 1 Response: Class 2 Conducted RF Immunity: IEC 61004-4: 2008 Cold: IEC 60255-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.4 IEC 60255-27: 2013, Section 7.2.10 Dry Heat: IEC 60068-2-3: 2007 IEC 60255-27: 2013, Section 10.6.1.3 Magnetic Field Immunity: IEC 61000-4-8: 2009 Dry Heat: IEC 600255-27: 2013, Section 10.6.1.3 Severity Level: 100 A/m for 3 seconds Damp Heat, Steady State: IEC 60068-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.5 Severity Level: Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.6 Severity Level: IBC 60004-10: 2001 Severity Level: 100 A/m (100 kHz and 1 MHz) Damp Heat, Cyclic: IEC 60068-2-30: 2001 Severity Level: 100 A/m (100 kHz and 1 MHz) IEC 600255-27: 2		x		
IEC 60255-27: 2013, Section 10.6.2.3 Infinitivity 2.5 kV common mode Withstand: Class 1 Response: Class 2 1 kV differential mode Bump: Class 1 2.5 kV common mode on comm. ports Bump: Class 1 IEC 60255-27: 2013, Section 10.6.2.4 2.5 kV common mode Response: Class 2 2.5 kV common mode 1 kV differential mode Cold: IEC 60255-27: 2013, Section 10.6.2.4 4 kV fast transient Response: Class 2 Conducted RF Immunity: IEC 600064-2.2008 IEC 60255-27: 2013, Section 10.6.1.2 IEC 60068-2.21: 2007 IEC 600255-27: 2013, Section 10.6.1.4 -40°C, 16 hours -40°C, 16 hours Magnetic Field Immunity: IEC 61000-4-6:2009 Dry Heat: IEC 60068-2-3: 2007 IEC 600255-27: 2013, Section 10.6.1.3 IEC 61000-4-9:2001 Bump Heat, Steady State: IEC 60068-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.5 Severity Level: Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 60055-27: 2013, Section 10.6.1.6 Severity Level: Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 600255-27: 2013, Section 10.6.1.6 Severity Level: Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 600255-27: 2013, Section 10.6.1.6 Severity Level: <	Shock Resistance:		6.2.2 Immunity ^a :	
Withstad: Class 1 1 kV differential mode Response: Class 2 1 kV common mode on comm. ports Bump: Class 1 1 EEE C37.90.1-2002 Seismic (Quake Response): IEC 60255-21.3: 1993 2.5 kV oscillatory IEC 60255-27: 2013, Section 10.6.2.4 2.5 kV oscillatory Response: Class 2 Conducted RF Immunity: IEC 61000-4-6:2008 IEC 60265-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.2 IEC 60068-2-1: 2007 IEC 60255-27: 2013, Section 10.6.1.4 Magnetic Field Immunity: IEC 61000-4-8:2009 IEC 60255-27: 2013, Section 10.6.1.4 Magnetic Field Immunity: IEC 61000-4-8:2009 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 7.2.10 Severity Level: IEC 60255-27: 2013, Section 10.6.1.3 Severity Level: 1000 A/m for 1 minute; 50/60 Hz IEC 60255-27: 2013, Section 10.6.1.5 Severity Level: 1000 A/m for 1 minute; 50/60 Hz IEC 60058-27: 2013, Section 10.6.1.5 Severity Level: 1000 A/m for 1 minute; 50/60 Hz IEC 60255-27: 2013, Section 10.6.1.5 Severity Level: 1000 A/m (100 kHz and 1 MHz) Damp Heat, Steady State: IEC 60068-2-30:2001 Severity Level: 100 A/m (100 kHz and 1 MHz) IEC 60068-2-30:2001 <td></td> <td></td> <td></td>				
Bump: Class 1 IEEE C37.90.1-2002 Seismic (Quake Response): IEC 60255-21-3: 1993 2.5 kV oscillatory IEC 60255-27: 2013, Section 10.6.2.4 4 kV fast transient Response: Class 2 Conducted RF Immunity: IEC 60255-26:2013, Section 7.2.8 Cold: IEC 60255-27: 2013, Section 10.6.1.2 IEC 60255-26:2013, Section 7.2.8 IEC 60255-27: 2013, Section 10.6.1.4 Magnetic Field Immunity: IEC 6025-26:2013, Section 7.2.10 Dry Heat: IEC 60255-27: 2013, Section 10.6.1.1 Magnetic Field Immunity: IEC 60255-26:2013, Section 7.2.10 Dry Heat: IEC 60068-2-2: 2007 IOO A/m for 3 seconds IOO A/m for 3 seconds IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.3 IEC 61000-4-9:2001 Severity Level: 1000 A/m for 3 seconds IEC 61000-4-11:2004 IEC 60255-27: 2013, Section 10.6.1.5 IEC 60068-2-78:2001 IEC 61000-4-11:2004 IEC 60255-27:2013, Section 10.6.1.5 40°C, 93% relative humidity, 10 days IOO A/m (100 kHz and 1 MHz) Damp Heat, Cyclic: IEC 60068-2-14: 2009 IEC 60025-26:2013, Section 7.2.11 IEC 60004-4-11:2004 IEC 60068-2-14: 2009 IEC 60058-2-14: 2009 IEC 60005-2.2013, Section 7.2.12 IEC 60004-4-17:1999 <tr< td=""><td></td><td></td><td>1 kV differential mode</td></tr<>				1 kV differential mode
Seismic (Quake Response): IEC 60255-21-3: 1993 IEC 60255-27: 2013, Section 10.6.2.4 Response: Class 2 2.5 kV oscillatory 4 kV fast transient Cold: IEC 60265-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.4 -40°C, 16 hours IEC 60068-2-1: 2007 IEC 60255-27: 2013, Section 10.6.1.4 IEC 60255-27: 2013, Section 10.6.1.4 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.3 85°C, 16 hours Magnetic Field Immunity: IEC 61000-4-8: 2009 IEC 61000-4-9: 2001 Severity Level: 1000 A/m for 1 minute; 50/60 Hz IEC 61000-4-9: 2001 Severity Level: 1000 A/m for 1 minute; 50/60 Hz IEC 61000-4-10: 2001 Severity Level: 1000 A/m (100 kHz and 1 MHz) Damp Heat, Steady State: IEC 60068-2-78: 2001 IEC 60255-27: 2013, Section 10.6.1.5 40°C, 93% relative humidity, 10 days Power Supply Immunity: IEC 61000-4-10: 2001 Severity Level: 100 A/m (100 kHz and 1 MHz) Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.6 25°-55°C, 6 cycles, 95% relative humidity Power Supply Immunity: IEC 61000-4-11: 2004 IEC 61000-4-11: 2004 IEC 600255-26: 2013, Section 7.2.11 IEC 60025-26: 2013, Section 7.2.12 IEC 600255-26: 2013, Section 7.2.12 IEC 600255-26: 2013, Section 7.2.12		1		IEEE C37.90.1-2002
Image: Construction of the constend of the construction of the constructio	Seismic (Quake Response):	•		
Cold: IEC 60068-2-1: 2007 IEC 60255-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.4 ID Vrms IEC 60255-27: 2013, Section 10.6.1.4 HEC 60255-27: 2013, Section 10.6.1.4 Magnetic Field Immunity: IEC 61000-4.8:2009 Dry Heat: IEC 60068-2-2: 2007 IEC 60255-27: 2013, Section 10.6.1.1 Magnetic Field Immunity: IEC 60225-26: 2013, Section 7.2.10 Dry Heat: IEC 60068-2-2: 2007 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.3 I000 A/m for 3 seconds Damp Heat, Steady State: IEC 60068-2-78: 2001 IEC 60068-2-78: 2001 IEC 600068-2-78: 2001 Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.6 Severity Level: Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 60255-27: 2013, Section 10.6.1.6 Severity Level: Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 600255-27: 2013, Section 10.6.1.6 Severity Level: Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 600255-27: 2013, Section 10.6.1.6 Severity Level: IEC 60068-2-14: 2009 IEC 60005-2-14: 2009 IEC 61000-4-11: 2004 IEC 60005-2-20: 2003 IEC 60055-1: 2010 section 6.12.3.5 IEC 600255-26: 2013, Section 7.2.12 IEC 60255-26: 2013, Section 7.2.12	Selonine (Qualle reosponse).			4 kV fast transient
Cold: IEC 60068-2-1: 2007 I0 Vrms IEC 60255-27: 2013, Section 10.6.1.2 IEC 60255-27: 2013, Section 10.6.1.4 Magnetic Field Immunity: IEC 61000-4-8:2009 Dry Heat: IEC 60068-2-2: 2007 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.3 Dry Heat: IEC 60068-2-78: 2007 IEC 60068-2-78: 2001 IEC 60068-2-78: 2001 IEC 60068-2-78: 2001 Damp Heat, Steady State: IEC 60068-2-78: 2001 IEC 60255-27: 2013, Section 10.6.1.5 Vmms Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 60025-27: 2013, Section 10.6.1.6 Severity Level: 1000 A/m Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 60025-27: 2013, Section 10.6.1.6 Severity Level: 100 A/m Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 60025-27: 2013, Section 10.6.1.6 Severity Level: 100 A/m Damp Heat, Cyclic: IEC 60068-2-30: 2001 IEC 600064-2-14: 2009 IEC 61000-4-11: 2004 IEC 60025-27: 2013, Section 10.6.1.6 25°-55°C, 6 cycles, 95% relative humidity Power Supply Immunity: IEC 61000-4-17: 1999 IEC 60068-2-14: 2009 IEC 600255-26: 2013, Section 7.2.11 IEC 60255-26: 2013, Section 7.2.12 IEC 60255-1: 2010 section 6.12.3.5 -40° to +85°C, ramp		Response: Class 2	Conducted RF Immunity:	
IEC 60255-27: 2013, Section 10.6.1.4 Magnetic Field Immunity: IEC 61000-4-8:2009 Dry Heat: IEC 60068-2-2: 2007 IEC 60225-26:2013, Section 7.2.10 Dry Heat: IEC 600525-27: 2013, Section 10.6.1.1 IEC 60225-26:2013, Section 7.2.10 Damp Heat, Steady State: IEC 60068-2-78:2001 IEC 60255-27: 2013, Section 10.6.1.5 Damp Heat, Steady State: IEC 60068-2-78:2001 IEC 61000-4-10:2001 Severity Level: 1000 A/m IEC 61000-4-10:2001 Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 60255-27: 2013, Section 10.6.1.5 Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 6000-4-10:2004 IEC 60255-27: 2013, Section 10.6.1.6 Severity Level: 100 A/m (100 kHz and 1 MHz) Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 61000-4-17:1999 IEC 61000-4-17:1999 IEC 60068-2-30:2001 IEC 60068-2-30:2001 IEC 61000-4-17:1999 IEC 61000-4-17:1999 IEC 61000-4-17:1999 IEC 60068-2-30:2001 IEC 60068-2-14: 2009 IEC 60008-2-14: 2009 IEC 60008-2-12: 2013, Section 7.2.11 Change of Temperature: IEC 60068-2-14: 2009 IEC 60255-26: 2013, Section 7.2.12 IEC 60255-26: 2013, Section 7.2.12 Hend o' to +85°C, ramp rate 1°C/min, IEC 60255-26: 2013, Section 7.	Cold:			
-40° C, 16 hoursIEC 60252-26:2013, Section 7.2.10 Severity Level: 1000 A/m for 3 seconds 100 A/m for 3 seconds 100 A/m for 3 seconds 100 A/m for 1 minute; 50/60 HzDry Heat:IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.3 85°C, 16 hoursIEC 60255-27: 2013, Section 10.6.1.3 Severity Level: 1000 A/m for 1 minute; 50/60 HzDamp Heat, Steady State:IEC 60068-2-78:2001 IEC 60255-27:2013, Section 10.6.1.5 40° C, 93% relative humidity, 10 daysIEC 61000-4-10:2001 Severity Level: 1000 A/mDamp Heat, Cyclic:IEC 60068-2-30:2001 IEC 60068-2-30:2001 IEC 60255-27:2013, Section 10.6.1.6 $25^{\circ}-55^{\circ}$ C, 6 cycles, 95% relative humidityPower Supply Immunity:IEC 61000-4-11:2004 IEC 61000-4-11:2004 IEC 61000-4-12:2000 IEC 61000-4-17:1999 IEC 61000-4-29:2000 IEC 61000-4-29:2000 IEC 60255-26:2013, Section 7.2.11 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.13Change of Temperature:IEC 60068-2-14: 2009 IEC 60255-1: 2010 section 6.12.3.5 -40° to +85°C, ramp rate 1°C/min,Power Supply Immunity:IEC 60255-26:2013, Section 7.2.13			Magnetic Field Immunity:	IEC 61000-4-8:2009
Dry Heat: IEC 60068-2-2: 2007 1000 Å/m for 3 seconds IEC 60255-27: 2013, Section 10.6.1.1 IEC 60255-27: 2013, Section 10.6.1.3 100 A/m for 1 minute; 50/60 Hz IEC 60255-27: 2013, Section 10.6.1.3 Severity Level: 1000 A/m Damp Heat, Steady State: IEC 60068-2-78:2001 IEC 61000-4-19:2001 IEC 60255-27: 2013, Section 10.6.1.5 1000 A/m Severity Level: 000 A/m IEC 60068-2-78:2001 IEC 61000-4-10:2001 IEC 60255-27: 2013, Section 10.6.1.5 Severity Level: 1000 A/m 000 A/m IEC 60068-2-30:2001 Severity Level: 1000 A/m IEC 60068-2-30:2001 IEC 60255-27:2013, Section 10.6.1.6 Severity Level: 1000 A/m Damp Heat, Cyclic: IEC 60068-2-30:2001 Power Supply Immunity: IEC 61000-4-11:2004 IEC 60025-27:2013, Section 10.6.1.6 25°-55°C, 6 cycles, 95% relative humidity Power Supply Immunity: IEC 61000-4-17:1999 IEC 60068-2-14: 2009 IEC 60255-26:2013, Section 7.2.11 IEC 60255-26:2013, Section 7.2.12 IEC 60255-21: 2010 section 6.12.3.5 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.13				
IEC 60255-27: 2013, Section 10.6.1.1 100 A/m for 1 minute; 50/60 Hz IEC 60255-27: 2013, Section 10.6.1.3 IEC 61000-4-9:2001 85°C, 16 hours Severity Level: Damp Heat, Steady State: IEC 60068-2-78:2001 IEC 60255-27: 2013, Section 10.6.1.5 1000 A/m vo°c, 93% relative humidity, 10 days IEC 61000-4-10:2001 Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 60255-27:2013, Section 10.6.1.6 Severity Level: 00 A/m (100 kHz and 1 MHz) Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 60255-27:2013, Section 10.6.1.6 Severity Level: 00 A/m (100 kHz and 1 MHz) Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 60255-27:2013, Section 10.6.1.6 Severity Level: 25°-55°C, 6 cycles, 95% relative Power Supply Immunity: IEC 61000-4-17:1999 IEC 61000-4-17:1999 IEC 60068-2-14: 2009 IEC 60255-26:2013, Section 7.2.11 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.13 IEC 60255-26:2013, Section 7.2.13	Dry Heat:	IEC 60068-2-2: 2007		
85°C, 16 hours Severity Level: Damp Heat, Steady State: IEC 60068-2-78:2001 IEC 60255-27:2013, Section 10.6.1.5 1000 A/m 40°C, 93% relative humidity, 10 days IEC 61000-4-10:2001 Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 60255-27:2013, Section 10.6.1.6 Severity Level: 25°-55°C, 6 cycles, 95% relative Power Supply Immunity: IEC 61000-4-11:2004 IEC 61000-4-11:2004 IEC 61000-4-17:1999 IEC 61000-4-17:1999 IEC 61000-4-29:2000 IEC 60255-26:2013, Section 7.2.11 Change of Temperature: IEC 60068-2-14: 2009 IEC 60255-1: 2010 section 6.12.3.5 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.13 IEC 60255-26:2013, Section 7.2.13				100 A/m for 1 minute; 50/60 Hz
Damp Heat, Steady State: IEC 60068-2-78:2001 1000 Å/m IEC 60255-27:2013, Section 10.6.1.5 IEC 61000-4-10:2001 A0°C, 93% relative humidity, 10 days Severity Level: Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 60068-2-30:2001 Power Supply Immunity: IEC 61000-4-11:2004 IEC 61000-4-11:2004 IEC 61000-4-17:1999 IEC 61000-4-17:1999 IEC 61000-4-29:2000 IEC 61000-4-29:2000 IEC 60068-2-14: 2009 IEC 60255-26:2013, Section 7.2.11 IEC 60255-1: 2010 section 6.12.3.5 IEC 60255-26:2013, Section 7.2.12 -40° to +85°C, ramp rate 1°C/min, IEC 60255-26:2013, Section 7.2.13				
IEC 60255-27:2013, Section 10.6.1.5 IEC 61000-4-10:2001 40°C, 93% relative humidity, 10 days Severity Level: Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 60255-27:2013, Section 10.6.1.6 Power Supply Immunity: 25°-55°C, 6 cycles, 95% relative Power Supply Immunity: IEC 61000-4-11:2004 IEC 61000-4-11:2004 IEC 61000-4-17:1999 IEC 61000-4-17:1999 IEC 61000-4-29:2000 IEC 60255-26:2013, Section 7.2.11 Change of Temperature: IEC 60068-2-14: 2009 IEC 60255-1: 2010 section 6.12.3.5 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.13 IEC 60255-26:2013, Section 7.2.13	Damn Heat Steady State:			
Weight C, 95% relative numberly, 10 days 100 A/m (100 kHz and 1 MHz) Damp Heat, Cyclic: IEC 60068-2-30:2001 IEC 60255-27:2013, Section 10.6.1.6 25°-55°C, 6 cycles, 95% relative humidity Power Supply Immunity: IEC 61000-4-11:2004 IEC 61000-4-17:1999 IEC 61000-4-29:2000 IEC 600255-26:2013, Section 7.2.11 IEC 60068-2-14: 2009 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.13				
IEC 60255-27:2013, Section 10.6.1.6 25°-55°C, 6 cycles, 95% relative humidity IEC 61000-4-11:2004 Change of Temperature: IEC 60068-2-14: 2009 IEC 60005-26:2013, Section 7.2.11 IEC 60255-1: 2010 section 6.12.3.5 -40° to +85°C, ramp rate 1°C/min, IEC 60255-26:2013, Section 7.2.13		40°C, 93% relative humidity, 10 days		-
25°-55°C, 6 cycles, 95% relative humidity IEC 61000-4-1?1999 Change of Temperature: IEC 60068-2-14: 2009 IEC 600255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.13 -40° to +85°C, ramp rate 1°C/min,	Damp Heat, Cyclic:		Power Supply Immunity:	IEC 61000-4-11:2004
humidity IEC 61000-4-29:2000 Change of Temperature: IEC 60068-2-14: 2009 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.12 IEC 60255-26:2013, Section 7.2.13 -40° to +85°C, ramp rate 1°C/min,				IEC 61000-4-17:1999
Change of Temperature: IEC 60068-2-14: 2009 IEC 60255-26:2013, Section 7.2.12 IEC 60255-1: 2010 section 6.12.3.5 IEC 60255-26:2013, Section 7.2.13 -40° to +85°C, ramp rate 1°C/min, IEC 60255-26:2013, Section 7.2.13				
-40° to +85°C, ramp rate 1°C/min,			Ι	IEC 60255-26:2013, Section 7.2.12
				IEC 60255-26:2013, Section 7.2.13

EMC Emissions				
Conducted Emissions:	IEC 60255-26:2013 Class A FCC 47 CFR Part 15.107 Class A CAN ICES-001(A) / NMB-001(A) EN 55011:2009 + A1:2010 Class A EN 55022:2010 + AC:2011 Class A EN 55032:2012 + AC:2013 Class A CISPR 11:2009 + A1:2010 Class A CISPR 22:2008 Class A CISPR 32:2015 Class A			
Radiated Emissions:	IEC 60255-26:2013 Class A FCC 47 CFR Part 15.109 Class A CAN ICES-001(A) / NMB-001(A) EN 55011:2009 + A1:2010 Class A EN 55022:2010 + AC:2011 Class A EN 55032:2012 + AC:2013 Class A CISPR 11:2009 + A1:2010 Class A CISPR 22:2008 Class A CISPR 32:2015 Class A			

Processing Specifications and Oscillography

AC Voltage and Current Inputs:	32 samples per power system cycle
Frequency Tracking Range:	10–70 Hz
Digital Filtering:	One-cycle cosine after low-pass analog filtering. Net filtering (analog plus digital) rejects dc and all harmonics greater than the fundamental.
Protection and Control Processing:	Processing interval is 4 times per power system cycle (except for math variables and analog quantities, which are processed every 25 ms). Analog quantities for rms data are determined through the use of data averaged over the previous 8 cycles.
Arc Flash Processing:	Arc-flash light is sampled 32 times per cycle. Arc-flash current, light, and 2 fast hybrid outputs are processed 16 times per cycle
Oscillography	
Length:	15, 64, or 180 cycles
Sampling Rate:	32 samples per cycle unfiltered
	4 samples per cycle filtered
Trigger:	Programmable with Boolean expression
Format:	ASCII and Compressed ASCII Binary COMTRADE (32 samples per cycle unfiltered)
Time-Stamp Resolution:	1 ms
Time-Stamp Accuracy:	±5 ms
Sequential Events Recorder	
Time-Stamp Resolution:	1 ms
Time-Stamp Accuracy (With Respect to Time Source) for all RWBs Except RWBs Corrsponding to Digital Inputs (INxx) and Arc- Flash Element (TOLx, 50xAF, OUTxxx):	±5 ms
Time-Stamp Accuracy (With Respect to Time Source) for RWBs Corrsponding to Digital Inputs (INxxx) and Arc-Flash Element (TOLx, 500-bc, OUTware)	
50xAF, $OUTxxx$):	1 ms
Relay Elements	
Thermal Overload (49)	

0.2–5000.0 A primary (limited to 20–160% of CT rating)

Locked Rotor Current:	2.5–12.0 • FLA
Hot Locked Rotor Time:	1.0–600.0 seconds
Service Factor:	1.01–1.50
Accuracy:	5% ±25 ms at multiples of FLA > 2 (cold curve method)
PTC Overtemperature (49)	
Type of Control Unit:	Mark A
Max. Number of Thermistors:	6 in a series connection
Max. Cold Resistance:	1500 Ω
Trip Resistance:	$3400 \pm 150 \Omega$
Reset Resistance:	1500–1650 Ω
Short Circuit Trip Resistance:	$25 \Omega \pm 10 \Omega$
Undercurrent (Load Loss) (37	7)
Setting Range:	Off, 0.10–1.00 • FLA, 0.01 • FLA increment
Accuracy:	±5% of setting ±0.02 • I _{NOM} A rms secondary
Maximum Pickup/Dropout	
Time:	1.5 cycles
Time Delay:	0.4–120.0 s, 1 s increment
Accuracy:	$\pm 0.5\%$ of setting $\pm 1/4$ cycle
Current Unbalance and Phase	e Loss (46)
Setting Range:	Off, 5–80%
Accuracy:	$\pm 10\%$ of setting $\pm 0.02 \cdot I_{NOM}$ A rms secondary
Maximum Pickup/Dropout Time:	1.5 cycles
Time Delay:	0-240 s, 1 s increment
Accuracy:	$\pm 0.5\%$ of setting $\pm 1/4$ cycle
Overcurrent (Load Jam)	
Setting Range:	Off, 1.00–6.00 • FLA, 0.01 s FLA increment
Accuracy:	±5% of setting ±0.02 • I _{NOM} A rms secondary
Maximum Pickup/Dropout Time:	1.5 cycles
Time Delay:	0-120 s, 0.1 s increment
Accuracy:	$\pm 0.5\%$ of setting $\pm 1/4$ cycle
Short Circuit (50P)	
Setting Range:	Off, 0.10–20.00 • FLA, 0.01 • FLA increment
Accuracy:	±5% of setting ±0.02 • I _{NOM} A secondary
Maximum Pickup/Dropout Time:	1.5 cycles
Time Delay:	0.0-5.0 s, 0.01 s increment
Accuracy:	$\pm 0.5\%$ of setting $\pm 1/4$ cycle
Ground Fault (50G)	
Setting Range:	Off, 0.10–20.00 • FLA, 0.01 • FLA increment
Accuracy:	±5% of setting ±0.02 • I _{NOM} A secondary
Maximum Pickup/Dropout Time:	1.5 cycles
Time Delay:	0.0-5.0 s, 0.01 s increment
Accuracy:	$\pm 0.5\%$ of setting $\pm 1/4$ cycle

Full-Load Current (FLA) Limits:

38

Ground Fault (50N)		Differential Protection (87M)	
Setting Range:		Setting Range:	Off, 0.05-8.00 A secondary
1 A, 5 A models:	Off, 0.01-650.00 A primary;	Accuracy:	±5% of setting ±0.10 A secondary
	0.01 A rms increment	Maximum Pickup/Dropout	
2.5 mA models:	Off, 0.01–25.00 A primary; 0.01 A rms increment	Time:	1.5 cycles
Accuracy:		Time Delay:	0.0-60.0 s, 0.01 s increment
1 A, 5 A models:	±5% of setting plus	Accuracy:	$\pm 0.5\%$ of setting $\pm 1/4$ cycle
rri, o rrinodelo.	±0.01 INOM A secondary	Undervoltage (27)	
2.5 mA models:	±5% of setting plus ±0.02 INOM A secondary	Vnm = [VNOM/PT Ratio] if Vnm = [VNOM/(1.732 • PT	f DELTA Y := DELTA Ratio)] if DELTA_Y := WYE
Maximum Pickup/Dropout	Time:	Setting Range:	Off, 0.02–1.00 pu • Vnm,
1 A, 5 A models:	1.5 cycles/1.5 cycles		0.01 increment
2.5 mA models:	100 ms + 1.5 cycles/1.5 cycles	Accuracy:	$\pm 5\%$ of setting ± 2 V secondary
	(for the 2.5 mA models the 50NxD	Maximum Pickup/Dropout Time:	1.5 cycles
	element includes a security timer of 100 ms)	Time Delay:	0.0–120.0 s, 0.1 s increment
Time Delay:	0.0-5.0 s, 0.01 s increment	Accuracy:	$\pm 0.5\%$ of setting $\pm 1/4$ cycle
Negative-Sequence Overcur	rent (50Q)	Overvoltage (59)	
Setting Range:	Off, 0.10–20.00 • FLA, 0.01 • FLA increment	Vnm = [VNOM/PT Ratio] if	f DELTA Y := DELTA Ratio)] if DELTA_Y := WYE
Accuracy:	±5% of setting ±0.02 • I _{NOM} A secondary	Setting Range:	Off, 0.02–1.20 pu • Vnm, 0.01 increment
Maximum Pickup/Dropout		Accuracy:	±5% of setting ±2 V secondary
Time:	1.5 cycles	Maximum Pickup/Dropout	
Time Delay:	0.0-120.0 s, 0.01 s increment	Time:	1.5 cycles
Accuracy:	$\pm 0.5\%$ of setting $\pm 1/4$ cycle	Time Delay:	0.0-120.0 s, 0.1 s increment
Arc-Flash Instantaneous Ov	ercurrent (50PAF, 50NAF)	Accuracy:	$\pm 0.5\%$ of setting $\pm 1/4$ cycle
Pickup Setting Range (50PA	F), A Secondary:	Inverse-Time Undervoltage	(271)
5 A models: 1 A models:	0.50–100.00 A, 0.01 A steps 0.10–20.00 A, 0.01 A steps	Setting Range:	OFF, 2.00–300.00 V (Phase elements, positive-sequence elements, phase-to-
Pickup Setting Range (50NA	Pickup Setting Range (50NAF), A Secondary:		phase elements with delta inputs, or synchronism-check voltage input)
5 A models: 1 A models:	0.05–10.00 A, 0.01 A steps 0.01–2.00 A, 0.01 A steps		OFF, 2.00–520.00 V (Phase-to-phase elements with wye inputs)
Accuracy:	0 to +10% of setting $\pm 0.02 \cdot I_{\text{NOM}} A$	Accuracy:	$\pm 1\%$ of setting plus ± 0.5 V
	secondary (steady-state pickup)	Time Dial:	0.00–16.00 s
Pickup/Dropout Time:	2–5 ms/1 cycle	Accuracy:	± 1.5 cyc plus $\pm 4\%$ between 0.95 and
Arc-Flash Time-Overlight (T	0L1-T0L8)		0.1 multiples of pickup
	nt 3.0%–80.0% (Point Sensor) 0.6%–80.0% (Fiber Sensor)	Inverse-Time Overvoltage (
of Full Scale: Pickup/Dropout Time:	2-5 ms/1 cycle	Setting Range:	OFF, 2.00–300.00 V (Phase elements, sequence elements, or phase-to-phase
Inverse-Time Overcurrent (•		elements with delta inputs or
			synchronism voltage input) OFF, 2.00–520.00 V (Phase-to-phase
Pickup Setting Range, A Sec			elements with wye inputs)
5 A models: 1 A models:	Off, 0.50–10.00 A, 0.01 A steps Off, 0.10–2.00 A, 0.01 A steps	Accuracy:	$\pm 1\%$ of setting plus ± 0.5 V
Accuracy:	$\pm 5\%$ of setting $\pm 0.02 \cdot I_{NOM} A$	Time Dial:	0.00–16.00 s
Time Dial:	secondary (steady-state pickup)	Accuracy:	±1.5 cyc plus ±4% between 1.05 and 5.5 multiples of pickup
U.S.:	0.50-15.00, 0.01 steps	Underpower (37)	
IEC:	0.05–1.00, 0.01 steps	Setting Range:	Off, 1-25000 kW, 1 kW increment
Accuracy:	± 1.5 cycles, $\pm 4\%$ between 2 and 30	-	primary
-	multiples of pickup (within rated range of current)	Accuracy:	$\pm 3\%$ of setting ± 5 W secondary
		Maximum Pickup/Dropout Time:	10 cycles
		Time Delay:	0.0-240.0 s, 1 s increment

Accuracy:

 $\pm 0.5\%$ of setting $\pm 1/4$ cycle

Reactive Power (VAR)

Setting Range: Accuracy:

Maximum Pickup/Dropout Time Time Delay: Accuracy:

Power Factor (55)

Setting Range: Accuracy:

Maximum Pickup/Dropout Time: Time Delay:

Accuracy: Frequency (81)

Setting Range:

Accuracy:

Maximum Pickup/Dropout Time: Time Delay:

Accuracy:

Loss of Field (40)

Zone 1 and Zone 2 Offset: Zone 1 and Zone 2 Diameter: 5 A model: $0.1-100.0 \Omega$ Steady-State Impedance Accuracy: Minimum Pos.-Seq. Signals: Directional Element Angle: -20.0° to 0.0° Pickup Time:

Zone 1 and Zone 2 Definite-Time Delays: Accuracy:

Speed Switch (14)

Fail Open:

Fail Close:

Phase Reversal(47)

Setting Range:

Speed Switch Time Delay Range: Trip: OFF, 1-240 s, 1 s increments Warn: OFF, 1-240 s, 1 s increments

Virtual Speed Switch Time Delay Range: 0.5-2.0 s Time Delay Accuracy:

Off, On

Fixed Time Delay: Out-of-Step Element (78)

Forward Reach: *د* ۸ . 1.1

5 A model:	0.1–100.0 Ω
1 A model:	$0.5-500.0 \Omega$
Reverse Reach:	
5 A model:	0.1–100.0 Ω
1 A model:	0.5-500.0 Ω

±5% of setting ±5 VAR secondary for PF between -0.9 to +0.9 10 cycles 0.0-240.0 s, 1 s increment $\pm 0.5\%$ of setting $\pm 1/4$ cycle Off, 0.05-0.99, 0.01 increment ±5% of full scale for current $\ge 0.5 \cdot FLA$ 10 cycles 0.0-240.0 s, 1 s increment $\pm 0.5\%$ of setting $\pm 1/4$ cycle Off, 15.00-70.00 Hz, 0.01 Hz increments ±0.01 Hz 5 cycles 0.00-400.00 s, 0.1 s increments $\pm 0.5\%$ of setting $\pm 1/4$ cycle 0.0-50.0 Ω for 5 A 0.0-250.0 Ω for 1 A 1 A model: 0.5-500.0 Ω 5 A model: ±0.1 Ω, ±5% of

Off, 1-25000 kVAR primary

(offset + diameter) 1 A model: ±0.5 Ω, ±5% of (offset + diameter) 5 A model: 0.25 V (V1), 0.25 A (I1) 1 A model: 0.25 V (V1), 0.05 A (I1)

3 cycles (max) 0.00-400.00 s, 0.01 s step

±0.1%, ±1/2 cycle

0.1-120.0 min ±0.5% of ±1/4 cycle

 $500 \pm 6 \, \text{ms}$

2 2

Single Blinder Right Blinder: 5 A model: 0.1-50.0 Ω $0.5 - 250.0 \Omega$ 1 A model: Left Blinder: 5 A model: 0.1-50.0.0 1 A model: 0.5-250.0 Ω Double Blinder Outer Resistance Blinder: 5 A model: 0.2-100.0 Ω 1.0-500.0 Ω 1 A model Inner Resistance Blinder: 5 A model: 0.1-50.0 Ω 1 A model: 0.5-250.0 Ω Steady-State Impedance Accuracy: 5 A model: $\pm 0.1 \Omega$, $\pm 5\%$ of diameter $\pm 0.5 \Omega$, $\pm 5\%$ of diameter 1 A model: Pos.-Seq. Current Supervision: 5 A model: 0.25-30.00 A 1 A model: 0.05-6.00 A Pickup Time: 3 cycles (Max) Definite-Time Delay: 0.00-1.00 s, 0.01 s step Trip Delay Range: 0.00-1.00 s, 0.01 s step Trip Duration Range: 0.00-5.00 s, 0.01 s step ±0.1% of user setting, ±8.3 ms at 60 Hz Accuracy: Field Under/Overcurrent Off, 1.0-2000.0 A dc, 0.1 increment Setting Range: Accuracy: 1% of full scale reading Maximum Pickup/Dropout 1.5 cycles Time: Time Delay Range: Level 1: 0.3-100.0 s, 0.1 s increment Level 2: 0.3-100.0 s, 0.1 s increment Time Delay Accuracy: ±0.5% +1/4 cycle Field Under/Overvoltage Setting Range: Off, 1.0-350.0 Vdc, 0.1 increment Accuracy: 1% of full scale reading Maximum Pickup/Dropout Time: 1.5 cycles Time Delay Range: Level 1: 0.3-100.0 s, 0.1 s increment Level 2: 0.3-100.0 s, 0.1 s increment Time Delay Accuracy: ±0.5% +1/4 cycle **Field Resistance** Off, 0.10-500.00 Ω, 0.01 increment Setting Range: 1% of full scale reading Accuracy: Maximum Pickup/Dropout Time: 1.5 cycles Timers Setting Range: Various Accuracy: $\pm 0.5\%$ of setting $\pm 1/4$ cycle **RTD Protection** Setting Range: Off, 1-250°C Accuracy: ±2°C

RTD Open-Circuit Detection: >250°C

RTD Short-Circuit Detection: <-50°C

RTD Types:

PT100, NI100, NI120, CU10

RTD Lead Resistance:	25 Ω max. per lead	Line-to-Neutral Voltages:	$\pm 1\%$ of reading, $\pm 1^{\circ}$ for voltages
Update Rate:	<3 s	Three-Phase Average Line-to	
Noise Immunity on RTD	As high as 1.4 Vac (peak) at 50 Hz or	Neutral Voltages:	±1% of reading for voltages
Inputs:	greater frequency	Voltage Imbalance (%):	±2% of reading
RTD Fault/Alarm/Trip Delay: Approx. 12 s		3V2 Negative-Sequence Voltage:	$\pm 2\%$ of reading for voltages
Metering		Real Three-Phase	
Accuracies are specified at 20°C, nominal frequency, ac phase currents within $(0.2-20.0) \cdot I_{NOM}$ A secondary, ac neutral currents within $(0.2-2.0) \cdot I_{NOM}$ A secondary, and ac voltages within 50–250 V secondary, unless otherwise noted.		Power (kW):	$\pm 3\%$ of reading for $0.10 < pf < 1.00$
		Reactive Three-Phase Power (kVAR):	$\pm 3\%$ of reading for $0.00 < \text{pf} < 0.90$
Phase Currents:	$\pm 1\%$ of reading, $\pm 1^{\circ}$ ($\pm 2.5^{\circ}$ at 0.2–0.5 A for relays with I _{NOM} = 1 A)	Apparent Three-Phase Power (kVA):	±3% of reading
Three-Phase Average Currer	ht: $\pm 1\%$ of reading, $\pm 0.02 \cdot I_{NOM}$	Power Factor:	$\pm 2\%$ of reading for $0.97 \le PF \le 1$
IG (Residual Current):	$\pm 2\%$ of reading, $\pm 0.02 \cdot I_{NOM}$, $\pm 2^{\circ}$	RTD Temperatures:	±2°C
IN (Neutral Current):	$\pm 1\%$ of reading, $\pm 2^{\circ}$ ($\pm 2.5^{\circ}$ at 0.2–0.5 A for relays with I _{NOM} = 1 A)	Field Voltage:	±1% of full-scale reading
		Field Current:	±1% of full-scale at 25°C
3I2 Negative-Sequence	Current: $\pm 2\%$ of reading, $\pm 0.02 \cdot I_{NOM}$	Field Resistance:	±3% of full-scale reading
		Energy Meter	
IA87, IB87, IC87 Differentia Currents:	al ±1% of reading	Accumulators:	Separate IN and OUT accumulators updated once per second, transferred to
Current Unbalance (%):	$\pm 2\%$ of reading, $\pm 0.02 \bullet I_{NOM}$		non-volatile storage 4 times per day.
System Frequency:	± 0.01 Hz of reading for frequencies	ASCII Report Resolution:	0.001 MWh
Thermal Capacity:	within 15–70 Hz (V1 > 60 V) ±1% TCU	Accuracy:	The accuracy of the energy meter depends on applied current and power factor as shown in the power metering accuracy specifications above. The additional error introduced by accumulating power to yield energy is negligible when power changes slowly compared to the processing rate of
j.	Time to trip ± 1 second		
Slip:	$\pm 5\%$ slip for 100% > speed $\ge 40\%$		
	$\pm 10\%$ slip for 40% > speed > 0%		
Line-to-Line Voltages:	$\pm 1\%$ of reading, $\pm 1^{\circ}$ for voltages		
Three-Phase Average Line-to- Line Voltage: ±1% of reading for voltages			once per second.
Line voltage.	1170 of reading for voltages	^a Front-port serial cable (non-fiber) lengths assumed to be <3 m.	

 $^{\rm b}~$ RTD cable lengths assumed to be <10 m.

Technical Support

We appreciate your interest in SEL products and services. If you have questions or comments, please contact us at:

Schweitzer Engineering Laboratories, Inc. 2350 NE Hopkins Court Pullman, WA 99163-5603 U.S.A. Tel: +1.509.338.3838 Fax: +1.509.332.7990 Internet: selinc.com/support Email: info@selinc.com

© 2013-2025 by Schweitzer Engineering Laboratories, Inc. All rights reserved.

All brand or product names appearing in this document are the trademark or registered trademark of their respective holders. No SEL trademarks may be used without written permission. SEL products appearing in this document may be covered by U.S. and Foreign patents.

Schweitzer Engineering Laboratories, Inc. reserves all rights and benefits afforded under federal and international copyright and patent laws in its products, including without limitation software, firmware, and documentation.

The information in this document is provided for informational use only and is subject to change without notice. Schweitzer Engineering Laboratories, Inc. has approved only the English language document.

This product is covered by the standard SEL 10-year warranty. For warranty details, visit selinc.com or contact your customer service representative.

SCHWEITZER ENGINEERING LABORATORIES, INC.

2350 NE Hopkins Court • Pullman, WA 99163-5603 U.S.A. Tel: +1.509.332.1890 • Fax: +1.509.332.7990 selinc.com • info@selinc.com

