

Date Code 20130701 SEL Application Note 2013-24

Application Note AN2013-24

Interface HMI Touchscreens to SEL Devices
Using Modbus® Protocols

Chris Hilling

INTRODUCTION
In industrial and commercial facilities, users need to interact with process and control equipment
locally as well as remotely. Supervisory control and data acquisition (SCADA) systems provide
remote system control. A touchscreen human-machine interface (HMI) provides local user
control and system monitoring. HMI screens also provide processed data in tabular, graphical, or
animated format locally on the site. This application note describes the use of Modbus protocols
to interface different SEL devices with third-party HMI touchscreens.

PROBLEM
There is a wide variety of HMI touchscreen products on the market today with a wide variety of
features, options, user-operability, and cost. An engineer may like the features of a programmable
logic controller (PLC) or control relay from one manufacturer but want an HMI touchscreen from
a different manufacturer. Engineers now have the flexibility to choose a touchscreen to work with
their system because of Modbus, a standardized industrial protocol. Understanding how Modbus
works with equipment from different manufacturers is critical for efficient and proper system
operation.

SEL SOLUTIONS
HMI touchscreens that use standard industrial protocols such as Modbus RTU, Modbus TCP, or
DNP3/IP can monitor and/or control many different SEL devices. SEL products can support both
Modbus RTU and Modbus TCP protocols, giving users extra flexibility without the additional
cost of expensive communications network upgrades.

2

SEL Application Note 2013-24 Date Code 20130701

PRINCIPLE OF OPERATION
Modbus is a binary protocol that allows communication between a single device that requests
data from multiple connected devices, such as relays, meters, or other HMI terminals. Within the
Modbus protocol, there are four commonly used protocol subtypes: RTU, ASCII, TCP, and UDP.
Table 1 describes the features of the four protocol subtypes.

Table 1 Modbus Transmission Mode

Transmission Mode Topology Description

RTU Serial
Each message data byte is composed of two 4-bit

hexadecimal characters. Message data are transmitted in a
continuous stream of characters.

ASCII Serial
Each message data byte is composed of two ASCII

characters. ASCII is less efficient than Modbus RTU but
good for a lower-performance communications link.

TCP Ethernet
The Modbus data message is encapsulated in a TCP
frame. Error-correcting code (ECC) is built into TCP
frames. Networks may suffer from time determinism.

UDP Ethernet

The Modbus data message is encapsulated in a UDP
frame. The UDP frame is smaller than the TCP frame,
resulting in quicker transmission times. UDP does not
have ECC or flow control algorithms, increasing the

likelihood of corrupted data.

The network layout and communications requirements generally determine which topology is
needed. This application note does not promote one topology over another but describes the basic
features of each.

Modbus Serial

Modbus serial is a master-slave, multidrop network protocol consisting of one master device and
multiple slave devices. In the examples in Figure 1 and Figure 2, the HMI is the Modbus master
and the SEL devices are the slaves. The master initiates communication with the slaves in one of
two ways: unicast messaging or broadcast messaging. For unicast messaging, the master
communicates with one slave at a time, then that slave responds to the master. For broadcast
messaging, the master communicates to all slaves at the same time, but the slaves are not required
to respond. Also, the Modbus slaves do not communicate directly with each other.

Figure 1 Modbus Serial Network With EIA-485 Interface

3

Date Code 20130701 SEL Application Note 2013-24

Figure 2 Modbus Serial Network With EIA-232 Interface

Devices on a Modbus network, such as those shown in Figure 1 and Figure 2, can use either the
EIA-232 or EIA-485 serial interface. The engineer assigns a unique station or identification (ID)
number to each device on the network. One Modbus serial network can have up to 247 devices
with addresses that range from 0 to 247 or 1 to 247 (decimal) for SEL devices. A single physical
EIA-485 network can support up to 32 devices before needing a signal repeater.

Modbus serial networks may require more wiring but are generally more reliable and time
deterministic than Modbus TCP. Long runs of twisted-pair wiring may also require terminating
impedances at cable ends to ensure data integrity.

Modbus Ethernet

Modbus TCP/IP Ethernet is a client-server communications protocol. In the network shown in
Figure 3, the HMI is the client and the SEL device is the server. The engineer assigns a unique IP
address to each Modbus device. The Modbus protocol uses TCP Port 502 for communication.
The engineer then networks the Modbus client and servers together using an SEL-2725 Five-Port
Ethernet Switch.

HMI Touchscreen Client

IP: 192.168.0.1

IP: 192.168.0.2

IP: 192.168.0.3

IP: 192.168.0.4

Port = 502

Port = 502

Port = 502

SEL-2725
Five-Port Ethernet Switch

Axion

SEL-735

SEL-751

Ethernet Switch
SEL Device Server

Figure 3 Modbus TCP/IP Network

Modbus TCP networks use Ethernet wiring methods to connect the client devices to the server.
This Modbus TCP network may simplify wiring but may make communication less time-
deterministic.

4

SEL Application Note 2013-24 Date Code 20130701

Protocol Operation

The Modbus client (master) reads the data registers in the server (slave) device. The client can
also write values to some registers or directly change the state of individual bits in the server
device. Modbus defines these registers or bits as elements. Each element has a particular function
and has read-only or read and write capabilities. Table 2 lists the different types of Modbus
elements and their features.

Table 2 Modbus Elements

Modbus Element
Function Code Prefix

(Hexadecimal)
Description

Coils 01
The client reads the on/off status of individual

bits (coils) in the server.

Inputs 02
The client reads the status of the discrete inputs

of the server.

Holding registers 03
The client reads the value located in the server

holding registers. These can be calculated values
or process variables.

Input registers 04
The client reads the analog input values that are

contained in server input registers. These can
include temperature or level readings.

Force coil 05
The client commands to change the state of bits

in the server device.

Preset registers 06 The client writes values into the server registers.

The Modbus function code defines the prefix of each data register address. The Modbus device
assigns a unique address, beginning at 0, to each data register. For example, if the Modbus master
needs to read the second input register on the slave, the register address is 40001 (04 + 0001).
The first register is at Address 0000 and the second register is at Address 0001. Note that some
Modbus devices begin the first register address at 0001 while others begin the first register
address at 0000. Verify the register starting address (0 or 1) in each device to select the right
registers.

Modbus uses two 8-bit values to make one 16-bit register. Modbus defines the first transmitted
8-bit number as the most significant byte (MSB) and the second transmitted 8-bit number as the
least significant byte (LSB). Verify the byte orientation of each device to ensure accurate data
communication.

© 2013 by Schweitzer Engineering Laboratories, Inc.
All rights reserved.

LAN2013-24

