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Calculating Intermediate Faults in 
Underground Cables 

Demetrios Tziouvaras, Schweitzer Engineering Laboratories, Inc. 

Abstract—Short-circuit calculations are extremely important 
in the application and setting of protective relays and the analysis 
of power system operations.  

This paper illustrates the calculation of fault currents and 
voltages during intermediate faults in underground cables, 
taking into consideration the cable sheath bonding and 
grounding method. The compensated ground loop impedance for 
faults along the cable is nonlinear with respect to fault distance 
when the cable sheaths are cross-bonded and grounded at both 
cable ends. This makes the application of ground distance relay 
elements for cable protection complex and undesirable. 

This paper provides numerical examples of intermediate fault 
analysis in underground cables to help protection engineers study 
similar or more advanced power system faults. This paper 
demonstrates the importance of phase frame of reference 
calculations in fault analysis, relay settings considerations, and 
an overall understanding of power system behavior. In addition, 
this paper shows the comparison of fault calculation results 
between Mathcad® and an Electromagnetic Transients Program 
steady-state solution. 

I.  INTRODUCTION 

Protection engineers frequently use phase and ground 
distance elements in directional comparison schemes for cable 
protection. They also typically use Zone 1 distance for 
instantaneous tripping of cable faults and Zone 2 time-delayed 
tripping for backup cable protection. Distance relay element 
application for cable protection requires a good knowledge of 
cable electrical parameters and their dependence on sheath 
bonding and grounding and a good understanding of available 
relay technology. 

Note that in overhead transmission lines, the positive- and 
zero-sequence line impedances (Z1L and Z0L) are proportional 
to line length. However, this is not true for underground 
cables, where the zero-sequence impedance may be nonlinear 
with respect to distance along the cable. The zero-sequence 
compensation factor (k0) for solid and cross-bonded cables is 
not constant for internal cable faults, and it depends on the 
location of the fault along the cable circuit. Because ground 
distance relays use a single value of k0, the compensated loop 
impedance displays nonlinear behavior. 

The application of ground distance relays for underground 
cable protection is a challenging problem because the 
compensated ground loop impedance depends on the ground 
fault current return path. The ground fault current return path 
depends on the cable sheath bonding and grounding method, 
any other conducting paths in parallel with the cable, and the 
fault point along the cable. Understanding how the cable 
grounding method affects the apparent impedances of ground 

distance relays is fundamental to underground cable protection 
[1]. 

 Most faults in underground single-conductor cables 
involve ground. For that reason, it is important to calculate the 
fault quantities during intermediate faults along the cable in 
order to calculate the apparent impedances seen by distance 
relays. 

Short-circuit programs provide the bus voltages and line 
currents, in the phase and sequence domain, for simple 
balanced and unbalanced short circuits in the network under 
study. In many situations, the protection engineer has to 
analyze more complex fault types that are not handled in 
standard short-circuit programs and typically not taught in a 
four-year electrical engineering curriculum [2]. Such is the 
case with the analysis of intermediate faults in underground 
cables with different methods of sheath grounding and 
bonding. Hence, the protection engineer has to resort to more 
advanced programs, such as the Electromagnetic Transients 
Program (EMTP), in order to provide answers to the problems 
at hand or use steady-state phase frame of reference methods 
using any engineering calculation software (e.g., Mathcad®, as 
discussed in this paper).  

This paper provides a method for the calculation of 
intermediate short-circuit faults in underground cables, taking 
into consideration sheath bonding and grounding. The short-
circuit method proposed in this paper is implemented in 
Mathcad and uses the phase frame of reference approach 
instead of the symmetrical component method. The phase 
frame of reference approach easily handles the complexity of 
cable core-to-core and core-to-sheath coupling, cable cross-
bonding, and the different types of cable sheath grounding. 
This paper shows the importance of phase frame of reference 
calculations in solving complex power system faults in 
underground cables. 

II.  INTERMEDIATE FAULTS IN UNDERGROUND CABLES WITH 

SHEATHS GROUNDED AT BOTH CABLE ENDS 

The study of intermediate faults in underground cables 
using symmetrical component theory is quite complex. One 
limitation of symmetrical component theory is the assumption 
that power system element impedances are balanced. This is 
not true in underground cables because of the different 
approaches used for cable sheath bonding and grounding. 
Another difficulty in applying symmetrical component theory 
is the need to retain the sheaths, including their transpositions 
and grounding along the cable path, to properly study 
intermediate faults along the cable. All of these difficulties are 
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overcome by using the phase frame of reference approach and 
a good mathematical programming software package. 

To analyze intermediate faults in underground cables, we 
create a generalized fault model of a single underground cable 
section with its sheaths grounded at both cable ends. This 
helps us understand how to create the generalized fault model. 
Next, we introduce additional complexities, such as multiple 
cable sections with sheath or core transpositions, core-to-
sheath or core-to-sheath-to-ground faults, and faults through 
an impedance. 

Fig. 1 shows a one-line diagram of an intermediate fault in 
a three-phase single-core underground cable section with the 
sheaths grounded at both ends of the cable. The sheaths are 
connected together at each cable end and grounded through 
resistances for the purpose of creating a generalized fault 
model. In the generalized fault model, we can vary the sheath 
grounding impedance from zero to an infinite value to 
simulate various types of grounding at one or both ends of the 
cable. In addition, three impedances at the intermediate fault 
point model core-to-sheath, core-to-ground, and core-to-
sheath-to-ground faults. 

 

Fig. 1. Generalized underground cable intermediate fault model 

The following system of equations describes the fault 
model of the network shown in Fig. 1: 

  S S CC S1 CS S2 F1E Z mZ I mZ I V     (1) 

    R R CC R1 CS R 2 F1E Z 1 m Z I 1 m Z I V         (2) 

  T
CS S1 SSG SS S2 F20 mZ I Z mZ I V     (3) 

    T
CS R1 RSG SS S2 F20 1 m Z I Z 1 m Z I V         (4) 

  1 1 1
S1 R1 F1 F F1 F F20 I I Z Z V Z V        (5) 

  1 1 1
S2 R 2 F F1 F2 F F20 I I Z V Z Z V        (6) 

where: 

ES = Bus S (sending-end) source voltages, 3x1 vector. 
ER = Bus R (receiving-end) source voltages, 3x1 vector. 
ZS = sending-end source impedance, 3x3 matrix. 
ZR = receiving-end source impedance, 3x3 matrix. 
ZCC = cable core-to-core series impedance, 3x3 matrix. 
ZCS = cable core-to-sheath series impedance, 3x3 matrix. 

ZSS = cable sheath-to-sheath series impedance, 3x3 
matrix. 

T
CSZ  = cable core-to-sheath series impedance transpose, 

3x3 matrix. 
IS1 = sending-end core currents, 3x1 vector. 
IS2 = sending-end sheath currents, 3x1 vector. 
IR1 = receiving-end core currents, 3x1 vector. 
IR2 = receiving-end sheath currents, 3x1 vector. 
VF1 = intermediate point core-to-ground voltage, 3x1 
vector. 
VF2 = intermediate point sheath-to-ground voltage, 3x1 
vector. 
ZF1 = intermediate point core-to-ground fault impedance, 
3x3 matrix. 
ZF2 = intermediate point sheath-to-ground fault 
impedance, 3x3 matrix. 
ZF = intermediate point core-to-sheath fault impedance, 
3x3 matrix. 
ZSSG = sending-end sheath-to-ground impedance, 3x3 
matrix. 
ZRSG = receiving-end sheath-to-ground impedance, 3x3 
matrix. 

Next, we rewrite (1) through (6) in compact matrix form. 

 E AX  (7) 

where: 

 

S

R

0

0

0

0

E

E

E
E

E

E

E

 
 
 
 

  
 
 
 
  

 (8) 

 

S1

S2

R1

R2

F1

F2

I

I

I
X

I

V

V

 
 
 
 

  
 
 
 
  

 (9) 

Each element in Matrices E and X is a 3x1 column vector. 
Matrix A is an 18x18 square matrix made up of cable series 
impedances and fault admittances. 

From (7), we calculate the core and sheath currents and the 
voltages at the fault point in Vector X, knowing Vector E and 
Matrix A. Next, we calculate the voltages at the sending- and 
receiving-end buses, knowing the source voltages and the core 
and sheath currents calculated in the previous step.  

Having knowledge of all the phase voltages and currents at 
the two ends of the cable (Buses S and R), we can then 
calculate the sequence component voltages and the ground 
loop impedances as seen from Buses S and R. 
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 
   

 
   

 
 

S CC CS

SR CC CS

T
CS SSG SS

T
CS RSG SS

1 1 1
F1 F F

1 1 1
F F2 F

Z mZ mZ O O I O

O O Z 1 m Z 1 m Z I O

mZ Z mZ O O O I
A O O 1 m Z Z 1 m Z O I

I O I O Z Z Z

O I O I Z Z Z

  

  

 
      
  

       
   
 

   

 (10) 

Matrix A is shown in (10), and each of its elements is 
described further in Section II, Subsection C. 

A.  Formulation of the E Column Vector 

Each of the elements in Matrix E is a 3x1 column vector. 
ES and ER consist of a balanced set of sending- and receiving-
end three-phase voltages. E0 is a zero column vector with 
dimensions of 3x1, as shown in (11). 

 0

0

E 0

0

 
   
  

 (11) 

The sending- and receiving-end source voltages are: 

 S SE e B  (12) 

 R RE e B  (13) 

where: 

 
T2B 1 a a     (14) 

 S LNe kV  (15) 

 j
R LNe kV e   (16) 

 j120a e 0.5 j0.8660254     (17) 

In (15) and (16), kVLN is the system line-to-neutral voltage 
and δ is the angle difference between the sending- and 
receiving-end source voltages. In (17), a is an operator with a 
unit magnitude and an angle of 120 degrees that causes a 
rotation of 120 degrees in the counterclockwise direction. 

B.  Formulation of the X Column Vector 

Equations (18) through (23) show the elements of the X 
column vector in (7). 

 

S_ ca

S1 S_ cb

S_ cc

I

I I

I

 
 

  
 
 

 (18) 

 

S_ sha

S2 S_ shb

S_ shc

I

I I

I

 
 

  
 
 

 (19) 

 

R _ ca

R1 R _ cb

R _ cc

I

I I

I

 
 

  
 
 

 (20) 

 

R _ sha

R 2 R _ shb

R _ shc

I

I I

I

 
 

  
 
 

 (21) 

 

F1_ a

F1 F1_ b

F1_ c

V

V V

V

 
 

  
 
 

 (22) 

 

F2 _ a

F2 F2 _ b

F2 _ c

V

V V

V

 
 

  
 
 

 (23) 

C.  Formulation of Matrix A 

Each element in Matrix A is a 3x3 submatrix. The elements 
of Matrix A are shown in (24) through (37). 

 

0 0 0

O 0 0 0

0 0 0

 
   
  

 (24) 

 

1 0 0

I 0 1 0

0 0 1

 
   
  

 (25) 

The series impedance matrix of a single-core three-phase 
underground cable is: 

 
CC CSCC CS

C T
SC SS CS SS

Z ZZ Z
Z

Z Z Z Z

  
    
   

 (26) 

where: 

 
ca _ ca ca _ cb ca _ cc

CC cb _ ca cb _ cb cb _ cc

cc _ ca cc _ cb cc _ cc

z z z

Z z z z

z z z

 
   
  

 (27) 

 
ca _ sa ca _ sb ca _ sc

CS cb _ sa cb _ sb cb _ sc

cc _ sa cc _ sb cc _ sc

z z z

Z z z z

z z z

 
   
  

 (28) 

 T
SC CSZ Z  (29) 

 
sa _ sa sa _ sb sa _ sc

SS sb _ sa sb _ sb sb _ sc

sc _ sa sc _ sb sc _ sc

z z z

Z z z z

z z z

 
   
  

 (30) 
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Next, we define the fault and sheath-to-ground impedance 
matrices. The core-to-sheath fault matrix is: 

 
FA

F FB

FC

Z 0 0

Z 0 Z 0

0 0 Z

 
   
  

 (31) 

Fig. 2 shows the circuit diagram to model the core-to-
ground faults using three phase-to-neutral impedances and one 
neutral-to-ground impedance. The modeling of the sheath-to-
ground fault and the modeling of the sending- and receiving-
end sheath grounding are similar to the circuit in Fig. 2. 

 

Fig. 2. Core-to-ground fault modeling circuit 

The core-to-ground fault matrix is: 

 
F1A F1G F1G F1G

F1 F1G F1B F1G F1G

F1G F1G F1C F1G

Z Z Z Z

Z Z Z Z Z

Z Z Z Z

 
   
  

 (32) 

The sheath-to-ground fault matrix is: 

 
F2A F2G F2G F2G

F2 F2G F2B F2G F2G

F2G F2G F2C F2G

Z Z Z Z

Z Z Z Z Z

Z Z Z Z

 
   
  

 (33) 

The sending-end sheath-to-ground impedance matrix is: 

 
SSA SSG SSG SSG

SSG SSG SSB SSG SSG

SSG SSG SSC SSG

Z Z Z Z

Z Z Z Z Z

Z Z Z Z

 
   
  

 (34) 

The receiving-end sheath-to-ground impedance matrix is: 

 
SRA SRG SRG SRG

SRG SRG SRB SRG SRG

SRG SRG SRC SRG

Z Z Z Z

Z Z Z Z Z

Z Z Z Z

 
   
  

 (35) 

Next, we compute the source impedance matrices (36) and 
(37) in the phase frame of reference using the respective 
sending- and receiving-end positive- and zero-sequence source 
impedances. 

  S 0S 1SZ Z Z , Z     (36) 

  R 0R 1RZ Z Z , Z     (37) 

where: 

  
     
     
     

s 0 1 m 0 1 m 0 1

0 1 m 0 1 s 0 1 m 0 1

m 0 1 m 0 1 s 0 1

z z , z z z , z z z , z

Z Z , Z z z , z z z , z z z , z

z z , z z z , z z z , z

 
      
  

 (38) 

   1 0
s 0 1

2Z Z
z z , z

3


  (39) 

   0 1
m 0 1

Z Z
z z , z

3


  (40) 

D.  Calculation of Underground Cable Core and Sheath 
Currents and Voltages at the Fault Point 

To calculate the underground cable core and sheath 
currents and fault point voltages, we solve for Vector X in (7), 
as shown in (41). 

 1X A E  (41) 

Next, we calculate the sending- and receiving-end voltages 
using (42) and (43). 

 S S S S1V E Z I   (42) 

 R R R R1V E Z I   (43) 

The bus voltages in (42) and (43) and the currents into the 
cable in Vector X from (41) are the quantities needed to 
calculate the apparent impedance (ZG_S) seen by the distance 
element. 

Next, we use (44) to calculate the a-phase ground distance 
loop impedance as seen from the sending Bus S. 

 S_ a
G _ S

S _ ca 0 S_ res

V
Z

I k I



 (44) 

where: 

 S_ res S _ ca S_ cb S_ ccI I I I    (45) 

k0 is the zero-sequence current compensation factor used 
in ground distance relays, traditionally calculated from 
the assumption of homogeneous zero- and positive-
sequence impedance. 

E.  Example: 1,200 Cu, 3,000-Meter, 230 kV Underground 
Cable Core-to-Sheath Fault 

First, we compute the intermediate fault currents and 
voltages in a 3,000-meter, 230 kV single-core three-phase 
cable with its sheaths grounded at both cable ends through a 
resistance of 0.0001 Ω. The a-phase faults are placed at 
300-meter intervals along the cable length, starting with 
m = 0 per unit (pu) at Bus S and m = 1 pu at Bus R. We ignore 
the cable shunt capacitances in this example to simplify the 
calculations. 

The cable impedance matrix for this example is shown in 
the appendix. The sending- and receiving-end source 
impedances are: 

 Z1S = j10 Ω 
 Z0S = j10 Ω 
 Z1R = j12 Ω 
 Z0R = j40 Ω 
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Table I shows the magnitude of the sending-end terminal 
fault currents for faults at 300-meter intervals along the cable. 
IS_ca, IS_cb, and IS_cc are the sending-end core currents in kA. 

Similarly, Table II shows the magnitude of the sending-end 
terminal fault voltages VS_ca, VS_cb, and VS_cc in kV. 

TABLE I 
FAULT CURRENT MAGNITUDES IN KA FROM BUS S 

m in pu |IS_ca| |IS_cb| |IS_cc| 

0.0 13.729 1.725 1.725 

0.1  13.273 1.728 1.728 

0.2 13.266 1.731 1.731 

0.3 13.258 1.734 1.734 

0.4 13.250 1.737 1.737 

0.5 13.241 1.740 1.740 

0.6 13.231 1.743 1.743 

0.7 13.222 1.745 1.745 

0.8 13.211 1.748 1.748 

0.9 13.200 1.751 1.751 

1.0 13.189 1.753 1.753 

TABLE II 
FAULT VOLTAGE MAGNITUDES IN KV AT BUS S 

m in pu |VS_ca| |VS_cb| |VS_cc| 

0.0 0.001 142.269 142.136 

0.1 0.316 142.324 142.117 

0.2 0.620 142.378 142.099 

0.3 0.913 142.430 142.082 

0.4 1.195 142.480 142.066 

0.5 1.466 142.528 142.050 

0.6 1.727 142.575 142.930 

0.7 1.977 143.619 143.021 

0.8 2.216 143.662 143.008 

0.9 2.446 142.704 141.996 

1.0 2.665 142.743 141.985 

Fig. 3 and Fig. 4 show the a-phase ground loop impedances 
for the sending and receiving ends, respectively, using (44) 
and (45) with a ground zero-sequence current compensation 
factor of k0 = 0.66/00. 
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Fig. 3. Bus S ground loop impedance (k0 = 0.66/00) in ohms 
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Fig. 4. Bus R ground loop impedance (k0 = 0.66/00) in ohms 

Fig. 5 and Fig. 6 show the sending-end (Bus S) ground 
loop resistance and reactance (k0 = 0.66/00). Note that faults 
are applied every 300 meters, with m = 0 at the sending end 
and m = 1 at the receiving end. 

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.8 1

C
om

pe
ns

at
ed

 L
oo

p 
R

 in
 O

hm
s

Per-Unit Distance From Bus S

0.6

 

Fig. 5. Bus S ground loop resistance (k0 = 0.66/00) in ohms 
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Fig. 6. Bus S ground loop reactance (k0 = 0.66/00) in ohms 

III.  INTERMEDIATE FAULTS IN CROSS-BONDED 

UNDERGROUND CABLES WITH SHEATHS  
GROUNDED AT BOTH CABLE ENDS 

Underground cable sheath grounding and bonding are 
applied to perform the following: 

 Reduce sheath losses to a minimum. 
 Limit sheath voltages as required by sheath 

sectionalizing joints. 
 Maintain a continuous sheath circuit for fault current 

return and adequate lightning and switching surge 
protection. 

The most common sheath bonding methods are single-
point bonding, solid bonding, and cross-bonding [3]. 

Cross-bonding of single-conductor cables attempts to 
neutralize the total induced voltage in the cable sheaths to 
minimize the circulating current and losses in the cable 
sheaths while permitting increased cable spacing, increased 
current-carrying capacity, and longer runs of cable lengths. 

The most basic form of cross-bonding consists of 
sectionalizing the cable into three minor sections of equal 
length and cross connecting the sheaths at each minor section. 
Longer cable circuits may consist of a number of major 
sections in series. When the number of minor sections is 
divisible by three, the cable circuit can be arranged to consist 
of more than one major section. Three minor cable sections 
form a major section. The cable cores may be transposed at 
each minor section, and the sheaths are cross-bonded at the 
end of each minor section throughout the whole cable route. 
The three cable sheaths are bonded and grounded at the two 
ends of the route only. Fig. 7 shows a major section of an 
underground cable having three minor sections. 

We use the cable model in Fig. 7 to study faults along the 
cable. The cable cores in Fig. 7 are not transposed. The cable 
sheaths are transposed at each minor section and grounded at 
the beginning and end of the major section. 

 

Fig. 7. Major underground cable section consisting of three minor sections 

A.  Conductor Transpositions 

The phase conductors in a three-phase circuit are mutually 
coupled, and the currents in any one conductor produce 
voltage drops in adjacent conductors. These induced voltage 
drops can be unequal even for balanced conductor currents 
because the mutual impedances depend entirely on the 
physical arrangement of the phase conductors. One way to 
equalize the mutual inductances is to transpose the line 
conductors so that each conductor occupies the next physical 
position for one-third of the total line length in a regular 
sequence, such as a-b-c, b-c-a, and c-a-b. 

Mathematically, we can use a rotation matrix to take care 
of the effect of conductor transpositions [4]. Fig. 8 shows a 
forward transposition (clockwise) of three phase conductors, 
where Conductor a in Section One (S-I) occupies Position 2 in 
Section Two (S-II), Conductor b in S-I occupies Position 3 in 
S-II, and Conductor c in S-I occupies Position 1 in S-II. 

 

Fig. 8. Forward conductor transposition 

Equation (46) is the rotation matrix corresponding to the 
forward transposition in Fig. 8. 

 

0 0 1

R 1 0 0

0 1 0

 
   
  

 (46) 

Premultiplying an impedance matrix by the rotation matrix 
(46) has the effect of rotating the self- and mutual impedances 
of a conductor in Position 1 to the matrix positions initially 
occupied by the self- and mutual impedances of a conductor in 
Position 2. In addition, it rotates the self- and mutual 
impedances of a conductor in Position 2 to the matrix 
positions initially occupied by the self- and mutual 
impedances of a conductor in Position 3 and those of a 
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conductor in Position 3 to the ones occupied previously by a 
conductor in Position 1. 

The rotation matrix has a number of interesting properties. 
First, the inverse of the rotation matrix exists and is equal to 
its transpose. Note that this is a counterclockwise, or reverse, 
rotation because it rearranges the matrix elements in exactly 
the reverse of the reordering produced by the forward rotation 
matrix. 

 1 T

0 1 0

R 0 0 1 R

1 0 0


 
   
  

 (47) 

The result of postmultiplying a matrix by R–1 is to move 
the first matrix column to the second position, the second 
column to the third position, and the third column to the first 
position. 

Note that two rotations produce the same result as one 
rotation in the opposite direction. 

 2

0 1 0

R 0 0 1

1 0 0

 
   
  

 (48) 

If the conductors are not transposed from one section to the 
next, the rotation matrix is equal to the unit or identity matrix. 
In addition, three forward rotations result in the unit matrix: 

 3

1 0 0

R 0 1 0

0 0 1

 
   
  

 (49) 

The voltage drop per-unit length in S-II as a function of the 
phase impedance matrix per-unit length of S-I is given by  
(50). 

 T
PH _(S-I)

S-II S-II

Va Ia

Vb R Z R Ib

Vc Ic

   
      
      

 (50) 

The rotation matrix for a three-phase underground single-
core cable with sheaths (a total of six conductors) is a 6x6 
matrix. Its elements depend on whether both the core and 
sheaths are transposed at each minor section, whether only the 
sheaths are transposed, and whether the rotation is forward or 
reverse. The rotation matrix for the underground cable shown 
in Fig. 7 is: 

 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
R

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

 
 
 
 

  
 
 
 
  

 (51) 

Note that in Fig. 7, the cable cores are not transposed from 
one minor section to the next. That is why the upper left-hand 
side 3x3 submatrix of (51) is equal to the unit matrix. Also 
note that the first transposition in Fig. 7 is in the forward, or 
clockwise, direction, similar to the one shown in Fig. 8. This 
is the reason why the lower right-hand side 3x3 submatrix is 
equal to the forward rotation matrix of (46). 

B.  Calculating Intermediate Faults in S-I 

To calculate faults in S-I, we take advantage of what we 
discussed in Section II of this paper on how to formulate 
Matrix A with some additional modifications to take into 
consideration cable minor sections S-II and S-III and their 
sheath transpositions. We also introduce a slightly modified 
notation for the cable self- and mutual impedances to 
distinguish between the three cable minor sections. For 
example, ZCC_1 is the core-to-core self- and mutual 
impedances for minor section S-I. The subscript 1 indicates 
impedances of S-I, 2 of S-II, and 3 of Section Three (S-III), 
respectively. Likewise, ZSS_1 is the sheath-to-sheath self- and 
mutual impedances for minor section S-I, and ZCS_1 is the 
core-to-sheath mutual impedances of S-I. We use the cable 
system in Fig. 9 to study faults in S-I of the cable.  

 

Fig. 9. Faults in S-I of underground cable 
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 (52) 

Matrix A for faults in S-I is shown in (52). 
The S-II and S-III submatrices are derived from the S-II 

and S-III cable self- and mutual impedances, taking into 
consideration the transpositions, as shown in (53) through  
(56). 

R is the rotation matrix in (51), and ZC is the cable self- and 
mutual impedance matrix in (26). Note that the transposition 
from S-II to S-I of the cable is in the reverse direction, which 
is reflected in (53). 

 T
C _ 2 C

1
Z RZ R

3
  (53) 

 
CC _ 2 CS _ 2CC _ 2 CS_ 2

C _ 2 T
SC _ 2 SS _ 2 CS_ 2 SS _ 2

Z ZZ Z
Z

Z Z Z Z

  
    

    
 (54) 

Also note that there are two reverse transpositions from 
S-III toward S-I of the cable (equivalent to a forward rotation), 
which is reflected in (55). 

 T
C _ 3 C

1
Z R Z R

3
  (55) 

 
CC _ 3 CS_ 3CC _ 3 CS_ 3

C _ 3 T
SC _ 3 SS_ 3 CS_ 3 SS_ 3

Z ZZ Z
Z

Z Z Z Z

  
    

    
 (56) 

Table III shows the fault currents in kA at Bus S for faults 
in S-I of the example in Section II, Subsection E, where each 
minor section is 1,000 meters and the sheaths are cross-
bonded at each minor section and grounded at both cable ends. 

TABLE III 
FAULT CURRENT MAGNITUDES IN KA FROM BUS S 

m in pu of S-I |IS_ca| |IS_cb| |IS_cc| 

0.0 13.279 1.721 1.721 

0.1 13.269 1.721 1.721 

0.2 13.259 1.722 1.722 

0.3 13.248 1.722 1.722 

0.4 13.236 1.723 1.723 

0.5 13.224 1.723 1.723 

0.6 13.211 1.723 1.723 

0.7 13.198 1.723 1.723 

0.8 13.184 1.723 1.723 

0.9 13.170 1.723 1.723 

1.0 13.155 1.723 1.723 

Table IV shows the voltages in kV at Bus S for faults in 
S-I. 

TABLE IV 
FAULT VOLTAGE MAGNITUDES IN KV AT BUS S 

m in pu of S-I |VS_ca| |VS_cb| |VS_cc| 

0.0 0.001 142.154 142.202 

0.1 0.336 142.202 142.160 

0.2 0.662 142.249 142.120 

0.3 0.976 142.293 142.080 

0.4 1.181 142.336 142.041 

0.5 1.575 142.376 142.003 

0.6 1.859 142.415 142.966 

0.7 2.133 143.452 143.930 

0.8 2.398 143.487 143.894 

0.9 2.654 142.521 141.860 

1.0 2.900 142.552 141.827 

C.  Calculating Intermediate Faults in S-II 

To calculate intermediate faults in S-II of the underground 
cable, we first calculate the proper cable impedances for S-III 
and S-I, taking into consideration the sheath transpositions, 
using (57) through (60). 

R is the rotation matrix in (51), and ZC is the cable self- and 
mutual impedance matrix in (26). Note that the sheath 
transposition from S-III to S-II of the cable is in the reverse 
direction, which is reflected in (57). 

 T
C _ 3 C

1
Z RZ R

3
  (57) 

 
CC _ 3 CS_ 3CC _ 3 CS_ 3

C _ 3 T
SC _ 3 SS_ 3 CS_ 3 SS_ 3

Z ZZ Z
Z

Z Z Z Z

  
    

    
 (58) 

Note that the transposition from S-I to S-II of the cable is 
in the forward direction, which is reflected in (59). 

 T
C _1 C

1
Z R Z R

3
  (59) 

 
CC _1 CS_1CC _1 CS_1

C _1 T
SC _1 SS_1 CS_1 SS_1

Z ZZ Z
Z

Z Z Z Z

  
    

    
 (60) 
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 (61) 

Next, we formulate Matrix A using (61). 
The formulation of Matrices E and X is the same as 

discussed in Section II, Subsections A and B. To calculate the 
voltages and currents at Buses S and R, we use the same 
approach discussed in Section II, Subsection D. 

Table V and Table VI show the fault currents in kA and 
fault voltages in kV at Bus S for a-phase core-to-sheath faults 
in S-II. 

TABLE V 
FAULT CURRENT MAGNITUDES IN KA FROM BUS S 

m in pu of S-II |IS_ca| |IS_cb| |IS_cc| 

0.0 13.044 1.773 1.716 

0.1 13.036 1.774 1.717 

0.2 13.028 1.775 1.718 

0.3 13.019 1.775 1.718 

0.4 13.009 1.776 1.719 

0.5 13.999 1.776 1.720 

0.6 13.989 1.777 1.720 

0.7 13.978 1.777 1.721 

0.8 13.966 1.778 1.721 

0.9 13.954 1.778 1.721 

1.0 13.942 1.778 1.721 

TABLE VI 
FAULT VOLTAGE MAGNITUDES IN KV AT BUS S 

m in pu of S-II |VS_ca| |VS_cb| |VS_cc| 

0.0 3.505 142.852 141.787 

0.1 3.678 142.885 141.763 

0.2 3.846 142.916 141.741 

0.3 4.007 142.945 141.719 

0.4 4.163 142.973 141.698 

0.5 4.312 142.998 141.678 

0.6 4.454 143.022 141.659 

0.7 4.591 143.044 141.641 

0.8 4.721 143.064 141.624 

0.9 4.846 143.083 141.607 

1.0 4.965 143.099 141.592 

D.  Calculating Intermediate Faults in S-III 

To calculate intermediate faults in S-III of the cable, we 
first calculate the proper cable impedances for S-I and S-II, 
taking into consideration the sheath transpositions, using (62) 
through (65). 

R is the rotation matrix in (51), and ZC is the cable self- and 
mutual impedance matrix in (26). Note that there are two 
forward transpositions from S-I toward S-III of the cable 
(equivalent to a reverse rotation), which is reflected in (62). 

 T
C _1 C

1
Z RZ R

3
  (62) 

 
CC _1 CS_1CC _1 CS_1

C _1 T
SC _1 SS_1 CS_1 SS_1

Z ZZ Z
Z

Z Z Z Z

  
    

    
 (63) 

Note that the transposition from S-II to S-III of the cable is 
in the forward direction, which is reflected in (64). 

 T
C _ 2 C

1
Z R Z R

3
  (64) 

 
CC _ 2 CS _ 2CC _ 2 CS_ 2

C _ 2 T
SC _ 2 SS _ 2 CS_ 2 SS _ 2

Z ZZ Z
Z

Z Z Z Z

  
    

    
 (65) 

Table VII and Table VIII show the fault currents in kA and 
fault voltages in kV at Bus S for a-phase core-to-sheath faults 
in S-III. 

TABLE VII 
FAULT CURRENT MAGNITUDES IN KA FROM BUS S 

m in pu of S-III |IS_ca| |IS_cb| |IS_cc| 

0.0 12.916 1.782 1.782 

0.1 12.910 1.784 1.784 

0.2 12.904 1.785 1.785 

0.3 12.897 1.785 1.785 

0.4 12.890 1.787 1.787 

0.5 12.883 1.787 1.787 

0.6 12.874 1.788 1.788 

0.7 12.866 1.789 1.789 

0.8 12.856 1.790 1.790 

0.9 12.846 1.790 1.790 

1.0 12.836 1.791 1.791 
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TABLE VIII 
FAULT VOLTAGE MAGNITUDES IN KV AT BUS S 

m in pu of S-III |VS_ca| |VS_cb| |VS_cc| 

0.0 5.146 143.127 141.939 

0.1 5.193 143.145 141.933 

0.2 5.235 143.161 141.928 

0.3 5.271 143.176 141.925 

0.4 5.305 143.189 141.922 

0.5 5.334 143.200 141.921 

0.6 5.360 143.210 141.921 

0.7 5.384 143.217 141.921 

0.8 5.406 143.223 141.923 

0.9 5.428 143.227 141.926 

1.0 5.449 143.229 141.929 

E.  Comparison of Mathcad and EMTP Results 

The results in Table III and Table IV shows the voltages in 
kV at Bus S for faults in S-I. 

Table IV were calculated using Mathcad. The underground 
cable in Fig. 7 was modeled in the phase frame of reference 
using the equations presented in Section II, Subsections A 
through D and in Section III, Subsection B. The cable model 
consists of three minor sections (1,000 meters each). The 
sheaths are transposed forward at each minor section and 
grounded at each cable end with 0.0001 Ω resistances.  

To verify the results of the proposed method, an EMTP 
model of the same cable was developed. The cable was 
modeled in 100-meter increments using mutual R-L elements. 
The cable shunt capacitances were not modeled so far in this 
paper in order to simplify the calculations and for ease of 
understanding the proposed method.  

Table IX and Table X show the comparison of the Bus S 
current and voltages for faults at two locations in S-I, at 20 
and 50 percent from Bus S.  

TABLE IX 
MATHCAD AND EMTP RESULTS FOR FAULTS IN S-I  
WITH THE FAULT POINT 20 PERCENT FROM BUS S 

 Mathcad EMTP 

Mag Angle Mag Angle 

Core 
Currents at 
Bus S in kA 

IS_ca 13.259 –89.73 13.259 –89.73 

IS_cb 1.722 –89.74 1.722 –89.74 

IS_cc 1.722 –89.74 1.722 –89.74 

Core 
Voltages at 
Bus S in kV 

VS_ca 0.662 –72.11 0.662 –72.11 

VS_cb 142.249 –126.01 142.249 –126.01 

VS_cc 142.220 126.04 142.220 126.04 

TABLE X 
MATHCAD AND EMTP RESULTS FOR FAULTS IN S-I  
WITH THE FAULT POINT 50 PERCENT FROM BUS S 

 Mathcad EMTP 

Mag Angle Mag Angle 

Core 
Currents at 
Bus S in kA 

IS_ca 13.224 –89.36 13.224 –89.36 

IS_cb 1.723 –89.23 1.723 –89.23 

IS_cc 1.723 –89.23 1.723 –89.23 

Core 
Voltages at 
Bus S in kV 

VS_ca 1.575 –69.29 1.575 –69.285 

VS_cb 142.376 –125.97 142.376 –125.97 

VS_cc 142.003 126.08 142.003 126.08 

Note that the EMTP steady-state results are the same as the 
results produced by the proposed method using the phase 
frame of reference approach and modeling the cross-bonded 
cable in Mathcad.  

Note also that the EMTP and Mathcad results are exactly 
the same for faults in S-II and S-III of the cable. The results in 
S-II and S-III are not shown here in the interest of space. 

F.  Ground Loop Impedances From Bus S 

To calculate the a-phase ground loop impedances as seen 
from Bus S, we use (44) and (45). The ground current 
compensation factor was set to k0 = 0.66/00, which is typical of 
a transmission line where Z0L is three times Z1L for illustration 
purposes. Fig. 10 shows the compensated loop resistance, and 
Fig. 11 shows the compensated loop reactance in ohms as seen 
from Bus S. 

 

Fig. 10. Compensated loop resistance (k0 = 0.66/00) in ohms for cross-
bonded cable 
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Fig. 11. Compensated loop reactance (k0 = 0.66/00) in ohms for cross-
bonded cable 
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Fig. 12 shows the compensated loop impedance in ohms as 
seen from Bus S. 
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Fig. 12. Compensated loop impedance (k0 = 0.66/00) in ohms for cross-
bonded cable 

Note that in cross-bonded cables where the sheaths are 
transposed at each minor section and grounded at both cable 
ends, the compensated loop resistance is not the maximum for 
a fault at the remote end. 

Note also that moving the fault from the end of a minor 
section to the beginning of the next minor section causes a 
different return path for the ground fault current and, 
consequently, causes a discontinuity in the compensated loop 
impedance. This discontinuity, shown in Fig. 11 and Fig. 12, 
offers some advantages in obtaining selectivity for a Zone 1 
setting distance element for faults in the last minor section. 
Note that the discontinuity is more pronounced when the fault 
is moved from the first to the second minor section. 

G.  Considerations for Setting Ground Distance Elements 

Ground distance elements measure fault impedance in 
terms of positive-sequence impedance only. Set the zero-
sequence current compensation factor so that the Zone 1 
ground distance elements do not see faults external to the 
protected cable, while the Zone 2 and Zone 3 ground distance 
elements see all cable internal faults and coordinate with 
distance relays on adjacent line or cable circuits. 

The choice of a zero-sequence current compensation factor 
can influence the reach and performance of ground distance 
relays. Choose a zero-sequence current compensation factor 
that obtains a constant or increasing slope of the compensated 
loop reactance for faults at the end of the cable. Do this by 
choosing a complex zero-sequence current compensation 
factor corresponding to the cable under study or by selecting a 
fictitious scalar ground zero-sequence current compensation 
factor that would compensate correctly for faults at the end of 
the cable. 

Consider other parameters in addition to the different 
behavior of the compensated loop impedance, depending on 
sheath bonding and grounding methods. Network topology 
plays an important role in selecting settings for underground 
cable applications. In some applications, parallel cables are 
installed between two substations. In others, there are mixed 
overhead and underground sections. Also consider adjacent 
line sections, whether cables or overhead lines. 

For example, in the case of parallel cables, select the proper 
zero-sequence current compensation factor for Zone 1 by 

placing a phase-to-ground fault at the remote terminal with the 
parallel cable out of service. Find the ground distance 
reactance measurement that does not overreach for that fault 
using the two zero-sequence current compensation factors that 
correspond to two different return paths: sheath return only 
and sheath and ground return. Use all three different cable 
zero-sequence impedances (see the appendix) in the fault 
study. Select the zero-sequence compensation factor that does 
not provide any overreach for the sheath return alone or for 
the sheath and ground return path. 

For the overreaching zones, select the zero-sequence 
compensation factor so that the ground distance overreaching 
zones do not underreach for any internal ground faults. Select 
the zero-sequence current compensation factor that 
corresponds to the zero-sequence impedance of the cable with 
ground return only. Place both parallel cables in service, 
simulate a line-to-ground fault at the remote terminal, and 
calculate the ground distance reactance measurement for each 
of the three possible zero-sequence cable impedances. 

Modern digital ground distance relay elements offer the 
user more options in achieving better performance of ground 
distance element measurement than do their older 
electromechanical and static counterparts. Modern elements 
offer more than one complex zero-sequence current 
compensation factor, with a wide range of magnitude and 
angle settings. In general, negative-sequence current 
polarizing is the preferred choice for cable applications 
because the negative-sequence network is more homogeneous 
than the zero-sequence network. In addition, modern digital 
relays offer a nonhomogeneous correction angle setting to 
help prevent overreach or underreach for ground faults at a 
specific fault point by compensating the angle of the reactance 
line. 

Although most of this discussion was on the ground 
distance element, phase distance elements can also be affected 
by large capacitive charging currents. The large charging 
currents can result in an overreaching effect of a Zone 1 phase 
distance relay. 

Protecting underground cables with distance relays can be 
quite challenging and difficult to achieve because of the cable 
electrical characteristics, the influence of grounding methods 
and return currents in the zero-sequence impedance of the 
cable, the nonlinear behavior of the compensated loop 
impedance, and the short cable length in many applications. 
For all of these reasons and the complexities involved in 
making the proper settings, most users prefer to protect high-
voltage underground cables using line current differential 
relays. Distance relays are typically applied in a directional 
comparison blocking or unblocking scheme and for backup 
protection. 

Modern digital relays have integrated into one relay box a 
complete line differential relaying scheme with full distance 
protection elements, including communications-assisted 
protection logic, negative- and zero-sequence directional 
elements, and a plethora of other overcurrent elements. With 
modern digital relays, we now have a choice of many different 
relay elements for the protection of underground cables, some 
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of which may be better suited than others. Supplementing 
ground distance elements with negative-sequence directional 
elements in a communications-assisted tripping scheme 
provides excellent resistive coverage for high-resistance 
ground faults (for example, during a flashover of a 
contaminated pothead). The use of negative-sequence 
directional elements has also been successful in a directional 
comparison scheme for the protection of submarine cables [5]. 

IV.  CABLE SHUNT CAPACITANCE CONSIDERATIONS 

The electrical characteristics of underground cables differ 
significantly from overhead transmission lines. Underground 
cables exhibit a much lower series inductance and a much 
higher shunt capacitance. 

The series inductance of cable circuits is typically 30 to 
50 percent lower than that of overhead lines because of the 
close spacing of cable conductors. The difference in the cable 
shunt capacitance is even more pronounced and can be 30 to 
40 times higher than that of overhead lines. The closer 
proximity of the cable conductor to ground potential, 
surrounded by the cable grounded sheath, and the dielectric 
constant of the insulation, which is several times that of air, 
cause this difference. 

Up to this point in this paper, we have ignored the cable 
shunt capacitance so as to not complicate the intermediate 
fault calculations. However, for long cables, it is important to 
take into consideration the cable shunt capacitance in the 
analysis of intermediate fault calculations. 

For short cables consisting of one section (of about 
1,000 meters) or for cross-bonded cables with three minor 
sections (300 meters each), we can include the shunt cable 
capacitances in a similar way to how we handled shunt core-
to-ground faults. Note that we must represent half of the cable 
capacitance at each cable end. In addition, we must modify 
Matrix A accordingly to take care of the additional shunt 
branches that are now part of the cable model. 

For very long cables having too many major sections, the 
proposed method becomes more complex and the user is 
advised to use other programs, such as EMTP, to study 
intermediate faults. EMTP is the preferred approach; however, 
other methods are discussed in [6] and [7], where the system 
multiphase admittance matrix is formed to study three-phase 
unbalanced networks. 

V.  CONCLUSION 

This paper illustrates the analysis of intermediate faults in 
underground ac cables using the phase frame of reference and 
Mathcad, an engineering calculation software package. 

The complexity of fault calculations in underground cables 
with sheath transpositions and sheath grounding necessitates 
the use of a multiphase analysis method instead of using the 
symmetrical component method. 

Numerical examples illustrate the use of the proposed 
method for a cable with its sheaths grounded at both cable 
ends.  

A second numerical example illustrates the results of 
intermediate fault calculations in each minor section of a 
cross-bonded cable, consisting of one major section with its 
sheaths transposed at each minor section and grounded at both 
cable ends. 

The results of the proposed method using Mathcad and the 
results from an EMTP analysis for faults along the cable are 
identical, validating the proposed method as an alternate 
method to using a steady-state EMTP solution. 

The zero-sequence impedance of the cable is not linearly 
related to fault distance and is affected by cable bonding and 
grounding methods.  

The application of ground distance elements for cable 
protection is complex, and protection engineers should be 
careful when making ground distance element settings, 
including proper selection of the zero-sequence current 
compensation factor. This paper presents considerations for 
setting ground distance elements and the zero-sequence 
current compensation factor. 

VI.  APPENDIX 

The single-conductor cable data used throughout the paper 
are the following: 

 Cable type: 230 kV 1,200 mm2 copper 
 Cable length: 1,000 m 
 Conductor radius: 2.15 E-02 m 
 Insulation radius: 4.52 E-02 m 
 Sheath radius: 4.98 E-02 m 
 Polyvinyl chloride (PVC) radius: 5.38 E-02 m 
 Conductor resistivity: 1.72 E-08 Ωm at 20°C 
 Sheath resistivity: 2.14 E-07 Ωm at 20°C 
 Permittivity of insulation: 1.0 
 Permittivity of PVC: 8.0 
 Earth resistivity: 100.0 Ωm 

Fig. 13 shows the underground cable conductors laid in a 
trefoil configuration. Note that the cable sheaths are grounded 
at both cable ends, and there is no ground continuity 
conductor. 

 

Fig. 13. 230 kV cable trefoil laying arrangement 
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 (66) 

The calculated phase impedance matrix of the cable  
(3,000 meters long) using EMTP in ohms is shown in (66). 

The cable sequence impedances are [1]: 
 Cable positive-sequence Z1C (Ω): 

Z1C = 0.039 + j 0.127 
 Zero-sequence conductor Z0C (Ω): 

Z0C = 0.195 + j 2.166 
 Zero-sequence sheath Z0S (Ω): Z0S = 0.333 + j 2.091 
 Zero-sequence mutual Z0m (Ω): Z0m = 0.177 + j 2.092 

To calculate the zero-sequence impedance of the cable (Z0) 
for the three different return paths, we can use the equivalent 
circuit shown in Fig. 14. 

Z0S

Z0C

ConductorI0

Sheath
Z0m

I0S

I0g

Z0C – Z0m

Z0S – Z0m

Z0m

I0S

I0g

I0

(a)

(b)

 

Fig. 14. Zero-sequence return currents (a) and equivalent circuit (b) 

The cable zero-sequence impedances for the three possible 
current return paths are: 

 Current return in the sheath only: 

 0 0C 0S 0mZ Z Z 2 • Z    (67) 

 0Z 0.174 j0.073    (68) 

 Current return in the ground only: 

 0 0C 0m 0m 0CZ Z Z Z Z     (69) 

 0Z 0.195 j2.166    (70) 

 Current in the sheath and ground in parallel: 

 
  2

0S 0m 0m 0m
0 0C 0m 0C

0S 0S

Z Z • Z Z
Z Z Z Z

Z Z


      (71) 

 0Z 0.172 j0.084    (72) 

VII.  REFERENCES 
[1] D. Tziouvaras, “Protection of High-Voltage AC Cables,” proceedings of 

the 32nd Annual Western Protective Relay Conference, Spokane, WA, 
October 2005. 

[2] D. Tziouvaras, “Analysis of Complex Power System Faults and 
Operating Conditions,” proceedings of the 35th Annual Western 
Protective Relay Conference, Spokane, WA, October 2008. 

[3] IEEE Standard 575-1988, IEEE Guide for Application of Sheath-
Bonding Methods for Single-Conductor Cables and the Calculation of 
Induced Voltages and Currents in Cable Sheaths. 

[4] P. M. Anderson, Analysis of Faulted Power Systems. The Iowa State 
University Press, Ames, Iowa, 1973, pp. 84–90. 

[5] J. Vargas, A. Guzmán, and J. Robles, “Underground/Submarine Cable 
Protection Using a Negative-Sequence Directional Comparison 
Scheme,” proceedings of the 26th Annual Western Protective Relay 
Conference, Spokane, WA, October 1999. 

[6] J. Arrillaga, C. P. Arnold, and B. J. Harker, Computer Modelling of 
Electrical Power Systems. John Wiley and Sons, 1983, pp. 10–42.  

[7] R. Benato and A. Paolucci, EHV AC Undergrounding Electrical Power. 
Springer, 2010, pp. 119–137. 

VIII.  BIOGRAPHY 
Demetrios Tziouvaras received a BSEE and MSEE from the University of 
New Mexico and Santa Clara University, respectively. He is an IEEE senior 
member and a member of the Power Engineering Society, the Power System 
Relaying Committee, and CIGRE. He joined Schweitzer Engineering 
Laboratories, Inc. in 1998 and currently holds the position of senior research 
engineer. From 1980 until 1998, he was with Pacific Gas and Electric, where 
he held various protection engineering positions, including principal 
protection engineer responsible for protection design standards, new 
technologies, and substation automation. He holds multiple patents and is the 
author or coauthor of many IEEE and protective relay conference papers. His 
work includes power system modeling, simulation, and design of advanced 
protection algorithms. 

© 2012 by Schweitzer Engineering Laboratories, Inc. 
All rights reserved. 

20120904 • TP6563-01 


	CoverPage_20150317
	6563_CalculatingIntermediate_DT_20120904

