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Tutorial on Symmetrical Components 
Part 1: Examples 

Ariana Amberg and Alex Rangel, Schweitzer Engineering Laboratories, Inc. 

Abstract—Symmetrical components and the per-unit system 
are two of the most fundamental and necessary types of 
mathematics for relay engineers and technicians. We must 
practice these techniques in order to fully understand and feel 
comfortable with them. This white paper provides both 
theoretical and real-world examples with questions that can be 
used to gain experience with symmetrical components. The full 
solutions to these questions can be found in the white paper 
“Tutorial on Symmetrical Components, Part 2: Solutions,” 
available for download at http://www.selinc.com. 

I.  INTRODUCTION 

The method of symmetrical components is used to simplify 
fault analysis by converting a three-phase unbalanced system 
into two sets of balanced phasors and a set of single-phase 
phasors, or symmetrical components. These sets of phasors 
are called the positive-, negative-, and zero-sequence 
components. These components allow for the simple analysis 
of power systems under faulted or other unbalanced 
conditions. Once the system is solved in the symmetrical 
component domain, the results can be transformed back to the 
phase domain. 

The topic of symmetrical components is very broad and 
can take considerable time to cover in depth. A summary of 
important points is included in this introduction, although it is 
highly recommended that other references be studied for a 
more thorough explanation of the mathematics involved. Refer 
to [1], [2], [3], [4], and [5] for more information on 
symmetrical components. 

A.  Converting Between the Phase and Symmetrical 
Component Domains 

Any set of phase quantities can be converted into 
symmetrical components, where α is defined as 1∠120, as 
follows: 
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where I0, I1, and I2 are the zero-, positive-, and negative-
sequence components, respectively. This equation shows the 
symmetrical component transformation in terms of currents, 
but the same equations are valid for voltages as well. 

This results in the following equations: 
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Likewise, a set of symmetrical components can be 
converted into phase quantities as follows: 
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This results in the following equations: 
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These conversions are valid for an A-phase base, which 
can be used for A-phase-to-ground, B-phase-to-C-phase, 
B-phase-to-C-phase-to-ground, and three-phase faults. In 
Section V, Example 4 shows how the base changes for other 
irregular fault types. These conversions are also only valid for 
an ABC system phase rotation. In Section VI, Example 5 
shows how the equations change for an ACB system phase 
rotation. 

A calculator was created in Microsoft® Excel® to allow us 
to convert between the phase and symmetrical component 
domains. This calculator is available for download with this 
white paper at http://www.selinc.com. 

B.  Transformer Representations in the Sequence Networks 

For information on the formation of the sequence networks 
as well as the representation of power system components in 
the sequence networks, see [1] and [2]. 
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Transformers are simply represented as their positive- and 
negative-sequence impedances in the positive- and negative- 
sequence networks, respectively. However, the transformer 
representation in the zero-sequence network can be more 
complex and is dependent on the type of transformer 
connection. Fig. 1 shows some common transformer 
connections and the equivalent zero-sequence representations. 
For a complete list of transformer connections, see [1]. 
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Fig. 1. Zero-sequence circuits for various transformer types 

C.  Connecting the Sequence Networks 

Once the sequence networks for the system are defined, the 
way they are connected is dependent on the type of fault. 
Sequence network connections for common shunt fault types 
are shown in the remainder of this subsection. For complete 
derivations of these network connections as well as sequence 
network connections for series faults, see [2]. In the 
connections that follow, ZF is defined as the fault impedance 
from each phase to the common point, and ZG is defined as the 
impedance from the common point to ground. The ZG term is 
only significant when ZF differs per phase or if the line 
impedance to the fault point is different between phases. The 
typical assumptions are that ZF is the same across all phases 
and the line impedances are equal, and therefore, the ZG term 
is neglected. 

For a three-phase fault, the positive-sequence network is 
used with the fault point connected back to the neutral bus, as 
shown in Fig. 2.  

 

Fig. 2. Sequence network connections for a three-phase fault 

For a single-phase-to-ground fault, the three networks are 
connected in series. Any fault impedance is multiplied by 3 
and included in this connection, as shown in Fig. 3. 

 

Fig. 3. Sequence network connections for a single-phase-to-ground fault 

For a phase-to-phase fault, the positive- and negative-
sequence networks are connected in parallel, as shown in 
Fig. 4. 

 

Fig. 4. Sequence network connections for a phase-to-phase fault 

For a double-line-to-ground fault, all three networks are 
connected in parallel, as shown in Fig. 5. 
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Fig. 5. Sequence network connections for a double-line-to-ground fault 

D.  The Per-Unit System 

The per-unit system puts all the values of a power system 
on a common base so they can be easily compared across the 
entire system. To use the per-unit system, we normally begin 
by selecting a three-phase power base and a line-to-line 
voltage base. We can then calculate the current and impedance 
bases using the chosen power and voltage bases as shown: 
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Any power system value can be converted to per unit by 
dividing the value by the base of the value, as shown: 

 
Actual quantity

Quantity in per unit
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  (7) 

Likewise, a per-unit value can be converted to an actual 
quantity at any time by multiplying the per-unit value by the 
base value of that quantity. 
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To convert impedances from one base to another, use the 
following equation: 
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For more information on the per-unit system, see [1]. 

E.  Examples 

The rest of this paper consists of theoretical and practical 
examples that can be used to practice and gain experience in 
symmetrical component and per-unit techniques. Each 
example consists of questions to guide the reader through the 
analysis as well as complete solutions. In the cases with real-
world events, the event records from the relays are available 
for download with this white paper and the reader should use 
ACSELERATOR Analytic Assistant® SEL-5601 Software to 
view them (available for free download at 
http://www.selinc.com). 

II.  EXAMPLE 1: SINGLE-PHASE VERSUS  
THREE-PHASE FAULT CURRENT 

This example shows how to calculate fault currents for two 
different fault types at two different locations on a distribution 
system. Fig. 6 shows the radial system with two possible fault 
locations. 

 

Fig. 6. Radial system with two fault locations 

II-a On a radial distribution feeder, what type of fault do 
we expect to produce the largest fault current? 

II-b Using symmetrical components, solve for the 
maximum fault current for a bolted three-phase fault at 
Location 1.  

II-c Using symmetrical components, solve for the 
maximum fault current for a phase-to-ground fault at 
Location 1. 

II-d Assume a core-type transformer with a zero-sequence 
impedance of 85 percent of the positive-sequence 
impedance. Solve for the fault current for a phase-to-
ground fault at Location 1, and compare the results 
with that of a three-phase fault. 

II-e Using symmetrical components, solve for the 
maximum fault current for a three-phase fault at 
Location 2. 

II-f Using symmetrical components, solve for the 
maximum fault current for a phase-to-ground fault at 
Location 2. Is this greater than or less than the fault 
current for a three-phase fault? 

III.  EXAMPLE 2: PER-UNIT SYSTEM AND  
FAULT CALCULATIONS 

This example shows how to work in the per-unit system 
and calculate fault currents for faults at the high-voltage 
terminals of the step-up transformer shown in Fig. 7. The 
prefault voltage at the fault location is 70 kVLL, and the 
generator and transformer are not connected to the rest of the 
power system. The source impedances shown are the 
subtransient reactances (Xd'') of the generator [6]. 
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Fig. 7. One-line diagram for fault current calculations 

III-a Select power and voltage bases for the per-unit 
system, and calculate current and impedance bases 
accordingly. 

III-b Convert all impedances on the system as well as the 
prefault voltage to a common base. 

III-c Draw the positive-, negative-, and zero-sequence 
networks for this system up to the fault point. 

III-d What are the maximum short-circuit phase currents for 
a three-phase fault?  

III-e What are the maximum short-circuit phase currents for 
a B-phase-to-C-phase fault? 

III-f What are the maximum short-circuit phase currents for 
an A-phase-to-ground fault?  

IV.  EXAMPLE 3: FAULT CALCULATIONS  
FOR A NONRADIAL SYSTEM 

This example shows how to work in the per-unit system 
and calculate fault currents for a nonradial system, as shown 
in Fig. 8. The prefault voltage at the fault location is 1.05 per 
unit, and the load current is negligible. The source impedances 
shown are the subtransient reactances (Xd'') of the generators 
[3]. 
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Fig. 8. One-line diagram of a nonradial system 

IV-a Select power and voltage bases for the per-unit 
system, and calculate the current and impedance bases 
accordingly. 
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IV-b Convert all impedances on the system as well as the 
prefault voltage to a common base. 

IV-c Draw the positive-, negative-, and zero-sequence 
networks for this system. 

IV-d What are the maximum short-circuit phase currents for 
a three-phase fault? 

IV-e What are the maximum short-circuit phase currents for 
a B-phase-to-C-phase fault? 

IV-f What are the maximum short-circuit phase currents for 
a B-phase-to-C-phase-to-ground fault? 

IV-g What are the maximum short-circuit phase currents for 
an A-phase-to-ground fault? 

IV-h For an A-phase-to-ground fault, find the maximum 
positive-, negative-, and zero-sequence current 
contributions from Source S and Source R. 

IV-i Find the phase voltages at the fault location during an 
A-phase-to-ground fault. 

V.  EXAMPLE 4: CHANGING BASES 

This example shows the importance of using the right base 
when computing symmetrical components. Typical textbook 
examples use an A-phase base, which always assumes an 
A-phase-to-ground, B-phase-to-C-phase, B-phase-to-C-phase-
to-ground, or three-phase fault. For other fault types, the base 
will need to be changed accordingly in order to compute the 
correct symmetrical components. 

This example shows a B-phase-to-ground fault that 
occurred on a transmission line. Open the event record titled 
Example 4.cev, and view the symmetrical components during 
the fault. 

V-a Are the symmetrical component currents what we 
expect to see for a phase-to-ground fault? 

V-b Derive the symmetrical components for an A-phase-
to-ground fault. 

V-c Derive the symmetrical components for a B-phase-to-
ground fault. 

V-d How do we obtain the correct symmetrical component 
values for a B-phase-to-ground fault? 

V-e Why did the symmetrical components in 
ACSELERATOR Analytic Assistant not calculate 
correctly? 

VI.  EXAMPLE 5: PHASE ROTATION 

This example shows the importance of phase rotation when 
calculating sequence quantities. The event titled 
Example 5.cev is a simulated load condition on an SEL-351S 
Protection System. The trip equation in the relay is: 

TR =51P1T + 51G1T + 67P1 + 50Q1 + OC 
where 50Q1 is a negative-sequence instantaneous 

overcurrent element. 

VI-a What is the pickup setting for 50Q1 in the relay? 
Based on the negative-sequence current seen in the 
event, should the relay have tripped? 

VI-b Using the phase currents from the event, calculate the 
negative-sequence current I2. 

VI-c Is it normal to see this much negative-sequence current 
during unfaulted conditions? 

VI-d What is the phase rotation of the system? Does this 
match the phase rotation setting in the relay? 

VI-e Why is ACSELERATOR Analytic Assistant calculating 
high negative-sequence quantities? 

VI-f Calculate the negative-sequence current by hand using 
ACB phase rotation. 

VI-g Why did the relay not trip? 

VII.  EXAMPLE 6: FAULT LOCATOR 

This example shows how to use symmetrical components 
to determine a fault location using event reports from two ends 
of a transmission line. An internal single-line-to-ground fault 
was detected on a transmission line by the relays at both ends, 
as shown in Fig. 9. The event reports from each relay are 
provided in the event records titled Example 6 - Side S.eve 
and Example 6 - Side R.eve. 

 

Fig. 9. Fault location on a two-source power system 

VII-a Draw the sequence networks for this fault. 

VII-b Using the sequence networks, write an equation to 
solve for the fault location m. 

VII-c Use the event reports to obtain voltage and current 
values during the fault as well as the negative-
sequence line impedance. Solve for m. 
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VIII.  EXAMPLE 7: TRANSFORMER LINE-TO-GROUND FAULT 

This example shows how to derive the phase shift, 
symmetrical components, and fault currents across a delta-wye 
transformer. The event report titled Example 7.cev was 
generated after a current differential relay protecting a Dy1 
transformer tripped, as shown in Fig. 10. Although the 
misoperation of the relay is not the focus of this exercise, it 
was caused by incorrect winding current compensation 
settings in the relay. 

115 13.2 kV

10.5 MVA

 

Fig. 10. Transformer current differential relay protecting a Dy1 transformer 

VIII-a What type of fault is this? Assuming a radial system, 
is the fault internal or external to the zone of 
protection? 

VIII-b Do we expect the prefault currents on the delta side to 
lead or lag the currents on the wye side? 

VIII-c The transformer is connected to the system as shown 
in Fig. 11. Does this change the current lead/lag 
relationship we expect to see across the transformer? If 
so, how? 
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Fig. 11. Transformer phase-to-bushing connections 

VIII-d Draw the phasors for the prefault currents we expect to 
see on the system as well as the currents coming into 
the relay. Do these match the prefault phasors in the 
event? 

VIII-e Draw the phasors that we expect to see on the system 
as well as the phasors coming into the relay during the 
fault. Does this match what the event shows? 

VIII-f Look at the symmetrical components in the event. 
Derive these phasors by drawing the sequence network 
of the fault. 

VIII-g Using the sequence components, work backwards to 
derive the phase fault currents on the delta and wye 
sides of the transformer. 

IX.  EXAMPLE 8: TRANSFORMER PHASE-TO-PHASE FAULT 

This example shows how to derive the phase shift, 
symmetrical components, and fault currents across a delta-wye 
transformer. The event report titled Example 8.txt was 
generated after a current differential relay protecting a delta-
wye transformer tripped, as shown in Fig. 12. The 
misoperation of the relay is not the focus of this exercise. 

 

Fig. 12. Transformer current differential relay protecting a delta-wye 
transformer 

IX-a What type of fault is this? Assuming a radial system, 
is the fault internal or external to the zone of 
protection?  

IX-b The transformer is connected to the system as shown 
in Fig. 13. Do we expect the currents on the delta side 
to lead or lag the currents on the wye side? 

 

Fig. 13. Transformer phase-to-bushing connections 

IX-c Draw the phasors for the prefault currents expected on 
the system as well as the phasors coming into the 
relay. 
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IX-d Draw the phasors expected on the system as well as 
coming into the relay during the fault. Does this match 
what the event shows? 

IX-e Look at the sequence phasors in the event. Derive 
these phasors by drawing the sequence network of the 
fault.  

IX-f Using the sequence components, work backwards to 
derive the phase fault currents on the delta and wye 
sides of the transformer. 

X.  REFERENCES 
[1] J. L. Blackburn and T. J. Domin, Protective Relaying Principles and 

Applications. CRC Press, Boca Raton, FL, 2007. 

[2] P. M. Anderson, Analysis of Faulted Power Systems. Iowa State 
University Press, Ames, IA, 1973. 

[3] J. D. Glover, M. S. Sarma, and T. J. Overbye, Power System Analysis 
and Design (4th Edition). Thomson Learning, Toronto, ON, 2008. 

[4] E. O. Schweitzer, III and Stanley E. Zocholl, “Introduction to 
Symmetrical Components,” proceedings of the 58th Annual Georgia 
Tech Protective Relaying Conference, Atlanta, GA, April 2004. 

[5] Westinghouse Electric Corporation, Relay-Instrument Division, Applied 
Protective Relaying. Newark, NJ, 1976. 

[6] The Electricity Training Association, eds., Power System Protection 
Volume 1: Principles and Components. The Institution of Electrical 
Engineers, London, UK, 1995. 

XI.  BIOGRAPHIES 
Ariana Amberg earned her BSEE, magna cum laude, from St. Mary’s 
University in 2007. She graduated with a Masters of Engineering in Electrical 
Engineering from Texas A&M University in 2009, specializing in power 
systems. Ariana joined Schweitzer Engineering Laboratories, Inc. in 2009 as 
an associate field application engineer. She has been an IEEE member for 
9 years. 

Alex Rangel received a BSEE and an MSE from The University of Texas at 
Austin in 2009 and 2011, respectively. In January 2011, Alex joined 
Schweitzer Engineering Laboratories, Inc., where he works as an associate 
field application engineer. Alex is currently an IEEE member. 

© 2012, 2013 by Schweitzer Engineering Laboratories, Inc. 
All rights reserved. 

20130422 • LWP0010-01 


