ISO 9001 REGISTERED ## Powertech Labs Inc. 12388 - 88th Avenue Surrey, British Columbia Canada V3W 7R7 Tel: (604)590-7500 Fax: (604)590-5347 www.powertech.bc.ca ## **CONTROLLER OSCILLATORY SWC TEST REPORT** | Client: | Schweitzer Engineering Laboratories, Inc., Pullman, WA, 99163-5603, USA | | | | |---|---|---------------------|----------|--| | Test Date: | 19 April 2012 | Project: | 21645-27 | | | Nameplate Data: Recloser Controller: Manufacturer: Model: Serial No.: Model No.: | Schweitzer Engineering Labora
SEL-651R-2
1113060652
0651R223XGA8AE2112XXXX | atories, Inc. | | | | Three-phase Recloser: Manufacturer: Catalog No.: Impulse level (BIL): Rated voltage: Rated current: Serial No.: | T&B
MVR3-27-12-N-PT
150 kV _{peak}
29.3 kV _{rms}
800 A _{rms} continuous/12.5 kA in
PT01 | terrupting | | | | Test Witness: | Eric Stratte - Schweitzer Engineering Laboratories, Inc. | | | | | Test Standard: | IEEE C37.60-2003, Clause 6.13.1: "Oscillatory and fast transients surge tests" | | | | | Atmospheric Condition | Relative humidity 25. | °C
0 %
2 mmHg | | | | Test Voltage: | 2.5 kV _{peak} | | | | | Test Procedure: | Test surge was applied to the control cable in common mode using a capacitive clamp and transverse mode through 1.5 mH coils. Test surge were applied to ac power input in common mode and transverse mode using an external coupling filter. The AC power supplied to the controller was 120 Volts, 60 Hz. | | | | | Test Results: | The controller and recloser operated normally following the Oscillatory SWC Test performed in accordance with the test procedures as per the above document. The controller complied with requirements of "IEEE C37.60-2003, Clause 6.13.1". | | | | | Remarks: | None | | | | Tested by: Reviewed by: Alex Babakov, P. Eng. **Project Engineer** M. Wang, P. Eng. High Voltage Specialist Engineer This report shall not be reproduced except in full, without the written approval of Powertech Labs Inc. Project No.: 21645-27(D) Page 1 of 3 ## **Oscillatory SWC Waveform Validity Tests** (in accordance with IEEE Std C37.90.1-2002, Clause A.2) ## **Performed before the Oscillatory SWC Test** 1. Measuring system feed through test Generator Output voltage ____2.5___ kV Feed through voltage _____ V (pass ≤ 1%) 2. Open circuit voltage waveform test Recorded waveforms - Figures 1 and 2. 3. Test Generator performance verification Test duration 2.04 s (2 to 2.2 s) Repetition rate 8 bursts per period (6-10 bursts per 16.7 ms) Oscillation frequency 0.91 MHz (0.9 to 1.1 MHz) Waveform envelope decay ___5.5___ μs (4 to 6 μs to 50%) Rise time of the first peak 61 ns (60 to 90 ns – 10% to 90%) Peak voltage level (no load) 2.5 kV (2.25 to 2.5 kV when set to 2.5 kV) Output impedance <u>231</u> Ω $(160 \text{ to } 240 \Omega)$ 4. Test Pass X Test Fail kV 3 2 1 0 -1 -2 -3 -0.4 0.3 1.0 1.8 2.5 3.2 μs Figure 1 Figure 2 ## Oscillatory SWC Waveform Validity Tests (in accordance with IEEE Std C37.90.1-2002, Clause A.2) ## **Performed after the Oscillatory SWC Test** | Measuring system feed through | 5. | Measuring | svstem | feed | through | test | |---|----|-----------|--------|------|---------|------| |---|----|-----------|--------|------|---------|------| Generator Output voltage ____2.5___ kV Feed through voltage _____ V (pass ≤ 1%) 6. Open circuit voltage waveform test Recorded waveforms – Figures 1 and 2. 7. Test Generator performance verification Test duration 2.02 s (2 to 2.2 s) Repetition rate ______ bursts per period (6-10 bursts per 16.7 ms) Oscillation frequency ______ MHz (0.9 to 1.1 MHz) Waveform envelope decay $\underline{\hspace{1cm}}$ 4.4 $\underline{\hspace{1cm}}$ μs (4 to 6 μs to 50%) Rise time of the first peak $\underline{\qquad}$ 60.2 ns (60 to 90 ns – 10% to 90%) Peak voltage level (no load) ____ kV (2.25 to 2.5 kV when set to 2.5 kV) 8. Test Pass X Test Fail Figure 1 Figure 2 **ISO 9001 REGISTERED** Powertech Labs Inc. 12388 - 88th Avenue Surrey, British Columbia Canada V3W 7R7 Tel: (604)590-7500 Fax: (604)590-5347 www.powertech.bc.ca ## **CONTROLLER FAST TRANSIENT SWC TEST REPORT** | Client: | Schweitzer Engineering Laboratories, Inc., Pullman, WA, 99163-5603, USA | | | | |--|--|--------------------------|----------|--| | Test Date: | 19 April 2012 | Project: | 21645-27 | | | Nameplate Data: Recloser Controller: Manufacturer: Model: Serial No.: Model No.: Three-phase Recloser: Manufacturer: | Schweitzer Engineering Labo
SEL-651R-2
1113060652
0651R223XGA8AE2112XXX | | | | | Catalog No.:
Impulse level (BIL):
Rated voltage:
Rated current:
Serial No.: | MVR3-27-12-N-PT
150 kV _{peak}
29.3 kV _{rms}
800 A _{rms} continuous/12.5 kA
PT01 | interrupting | | | | Test Witness: | Eric Stratte - Schweitzer Engineering Laboratories, Inc. | | | | | Test Standard: | IEEE Std C37.60-2003, Clause 6.13.1: "Oscillatory and fast transients surge tests" | | | | | Atmospheric Conditions | Relative humidity 2 | 1 °C
5.0 %
62 mmHg | | | | Test Voltage: | 4.0 kV _{peak} | | | | | Test Procedure: | Test surge was applied to the control cable in common mode using a capacitive clamp and transverse mode through 1.5 mH coils. Test surges were applied to ac power input in common mode and transverse mode using an external coupling filter. The AC power supplied to the controller was 120 Volts, 60 Hz. | | | | | Test Results: | The controller and recloser operated normally following the Fast Transient SWC Test performed in accordance with the test procedures as per the above document. The controller complied with requirements of "C37.60-2003, Clause 6.13.1". | | | | | Remarks: | None | | | | Tested by: Reviewed by: Alex Babakov, P. Eng. Project Engineer M. Wang, P. Eng. Aug 1997 High Voltage Specialist Engineer This report shall not be reproduced except in full, without the written approval of Powertech Labs Inc. Project No: 21645-27(C) Page 1 of 3 # Fast Transient SWC Waveform Validity Tests (in accordance with IEEE Std C37.90.1-2002, Clause A.2) ## **Performed before the Fast Transient SWC Test** | 4 | Measuring | | 6 | ما بم یا ماله | 11 | |---|-----------|--------|------|---------------|------| | | Measuring | SVSTAM | TOOM | mrouan | IASI | | | Mododing | System | 1000 | unougn | LOOL | Generator Output voltage ____ 4.1 ___ kV Feed through voltage _____ 0.8 V (pass if $\leq 1\%$) 2. Open circuit voltage waveform test Recorded waveforms - Figures 1 and 2. 3. Test Generator performance verification Rise time 4.2 __ ns (3.5 to 6.5 ns – 10% to 90%) Peak voltage level (no load) 4.1 kV (3.6 to 4.4 kV when set to 4 kV) Output impedance 53 Ω (40 to 60 Ω) (2 to 3 kHz) Impulse duration 64.2 ns 2.5 kHz (35 to 65 ns to 50% value) Repetition rate Burst duration 14.4 ms (12 to 18 ms) Burst period <u>269</u> ms (240 to 360 ms) Test duration <u>60.1</u> s (≥ 60 s) Figure 1 Figure 2 ## **Fast Transient SWC Waveform Validity Tests** (in accordance with IEEE Std C37.90.1-2002, Clause A.2) #### **Performed after the Fast Transient SWC Test** 5. Measuring system feed through test Generator Output voltage ____4.08__ kV Feed through voltage _____ 0.8 V (pass if $\leq 1\%$) 6. Open circuit voltage waveform test Recorded waveforms - Figures 1 and 2. 7. Test Generator performance verification Rise time 5.18 ns (3.5 to 6.5 ns – 10% to 90%) Peak voltage level (no load) _____ 4.08 kV (3.6 to 4.4 kV when set to 4 kV) Output impedance _____51.6 Ω (40 to 60 Ω) Impulse duration _____64.8 ns (35 to 65 ns to 50% value) Repetition rate _____ kHz (2 to 3 kHz) Burst duration _____ 14.9 _ ms (12 to 18 ms) Burst period _____ ms (240 to360 ms) Test duration _____ 60.2 s (\geq 60 s) 8. Test Pass X Test Fail Figure 1 Figure 2 **ISO 9001 REGISTERED** ### Powertech Labs Inc. 12388 - 88th Avenue Surrey, British Columbia Canada V3W 7R7 Tel: (604)590-7500 Fax: (604)590-5347 www.powertech.bc.ca ## RECLOSER-CONTROLLER SIMULATED SURGE ARRESTER OPERATION TEST REPORT | Client: | Schweitzer Engineering Laboratories, Inc., Pullman, WA, 99163-5603, USA | | | | |---|--|---------------|----------------------|------------------| | Test Date: | 16 to 18 May 2012 | Project: | 21645-27 |) | | Nameplate Data: Recloser Controller: Manufacturer: Model: Serial No.: Model No.: | Schweitzer Engineering Labora
SEL-651R-2
1113060652
0651R223XGA8AE2112XXXX | tories, Inc. | | | | Three-phase Recloser: Manufacturer: Catalog No.: Impulse level (BIL): Rated voltage: Rated current: Serial No.: | T&B
MVR3-27-12-N-PT
150 kV _{peak}
29.3 kV _{rms}
800 A _{rms} continuous/12.5 kA int
PT01 | errupting | | | | Test Standard: | IEEE Std C37.60-2003, Clause 6.13.2: "Simulated Surge Arrester Operation Test" | | | | | Test Witness: | Eric Stratte - Schweitzer Engineering Laboratories, Inc. | | | | | Nominal Test Voltage and Current: 120 kV _{peak} (150 kV _{peak} * 0.8), 7 kA _{peak} | | | | | | Test Configurations Tes | ted (in accordance with the abo | ve standard): | | | | | A – 15 surges of positive polarity and 15 surges of negative polarity were applied to the source bushing with the recloser open. B – 15 surges of positive polarity and 15 surges of negative polarity were applied to the source bushing with the recloser closed. C – 15 surges of positive polarity and 15 surges of negative polarity were applied to the load bushing with the recloser closed. D - 15 surges of positive polarity and 15 surges of negative polarity were applied to a properly rated transformer with the recloser open. E - 15 surges of positive polarity and 15 surges of negative polarity were applied to a properly rated transformer with the recloser closed. | | | | | Test Results: | The controller and recloser co | | requirements of IEEE | Std C37.60-2003, | | Remarks: | None | | | | Tested by: M. Wang, P. Eng. High Voltage Specialist Engineer Reviewed by: A.J. Vandermaar, P. Eng. Manager, High Voltage Laboratory This report shall not be reproduced except in full, without the written approval of Powertech Labs Inc. Project No.: 21645-27(A) Page 1 of 1